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Power Analysis and Sample Sizes for Randomized Block Designs with Subsampling

This pamphlet will extend the results of the previous pamphlet to the Randomized Complete

Block Design. The effectiveness of blocking to increase the power of treatment tests is also

discussed. The creation of the graphs in terms of programming is almost identical to that of the

Completely Randomized Design, except for the calculation of the denominator degrees of freedom

of the F-test for treatments. This is described in the next pamphlet (BI #51).

As before, two components of variation requiring estimates are identified from the ANOVA

table. For discussion purposes we shall use a design similar to that of the previous pamphlet. This

is obtained by randomly assigning the treatments (factor T with t = 4 levels) to one plot (factor P

with p = 1 levels) within each of several blocks (factor B with b = 4 levels). Plots are the

experimental units and each is subsampled e = 10 times to obtain an estimate of the plot response

(subsamples will be factor E as before). Since blocks are usually considered random, this design

has only one fixed factor, namely the treatment T. The general ANOVA table is:

Source of Degrees of
Variation freedom Expected Mean Squares Mean Square Error
sssssssssssssssssssss ssssssssssssssssssssss ssssssssssssssssssssssssssssssssssssssssssssssssssss ssssssssssssssssssssssssssss ssssssssssss

Block B b-1 σ2 + eσ2 + + tpeσ2 1 MSB MSPe p( b) B

Treatment T t-1 σ2 + eσ2 + peσ2 + bpeφ MST MSBTe p( b) BT T

Error B x T (b-1)(t-1) σ2 + eσ2 + peσ2 MSBT MSPe p( b) BT

Plots P(BT) bt(p-1) σ2 + eσ2 MSP MSEe p( b)

Subsamples E(PBT) pbt(e-1) σ2 MSE -e

This table explicitly includes the source of variation for plots nested within blocks. This

source is traditionally left out of textbook discussions since it has zero degrees of freedom. I prefer

to include it so that the effect of plot variability within blocks can be seen. Further, designs with

replication of plots within blocks (that is p > 1) are occasionally established and it is clear from the

above table how that design would be analyzed. In that case, there is a legitimate test for blocks

(assuming that blocks are not confounded with some other source of variation for which the test is

really of interest, see BI #34 for a discussion). Nevertheless, the traditional design has only one

plot per block/treatment and the above table can be modified to reflect this fact. The resulting

table is:

1
Notice that the controversy around this EMS centers around whether the block by treatment interaction should also

be included as part of the EMS. In any case, the test for treatment is clear.
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Source of Degrees of
Variation freedom Expected Mean Squares Mean Square Error
sssssssssssssssssssss ssssssssssssssssssssss ssssssssssssssssssssssssssssssssssssssssssssssssssss ssssssssssssssssssssssssssss ssssssssssss

Block B 3 σ2 + eσ2 + + teσ2 MSB MSPe p( b) B

Treatment T 3 σ2 + e(σ2 + σ2 ) + beφ MST MSBTe p( b) BT T

Error B x T 9 σ2 + e(σ2 + σ2 ) MSBT MSE 2
e p( b) BT

Plots P(BT) 0 σ2 + eσ2 MSP MSEe p( b)

Subsamples E(PBT) 144 σ2 MSE -e

Total ptbe - 1 = 159

We can see from this table that there is a suitable error term for Treatment, namely the Error

or B x T source of variation (estimated by MSBT). This EMS contains three components of

variation, only one of which can be separately estimated; namely, σ2, estimated by MSE. Sincee

MSP is not estimable (with zero degrees of freedom) we cannot obtain separate estimates for σ2
p( b)

and σ2 from an ANOVA table for a post hoc analysis3. Nevertheless, it is only necessary toBT

obtain an estimate for the combined components of variation σ2 + σ2 .p( b) BT

To determine sample sizes or power for the Randomized Block Design, as before we must

consider: 1) the alternate hypothesis, H ; 2) our choices for α and β; 3) the number of subsamples,A

e and σ2; and 4) the number of blocks, b (instead of plots, p) and σ2 + σ2 (instead of σ2)4.e p( b) BT p

The number of blocks or plots and the components of variation σ2 + σ2 and σ2 play equivalentp( b) BT p

mathematical roles in the determination of power and in the use of Cox's rule of thumb.

Cox's rule of thumb also applies but must be modified to state that ttthhheeerrreee iiisss nnnooottt mmmuuuccchhh iiinnncccrrreeeaaassseee

iiinnn pppooowwweeerrr wwwhhheeennn eee iiisss gggrrreeeaaattteeerrr ttthhhaaannn 444(((σσσ222///(((σσσ222 +++ σσσ222 )))))) (from Cox, 1958, page 181). The values ofeee ppp((( bbb))) BBBTTT

σ2 and σ2 used in the graphs for the completely randomized design (see BI #49) and thee p

corresponding values of the ratio are shown below. If σ2 + σ2 for the Randomized Blockp( b) BT

Design (RBD) has the same value as σ2 for the Completely Randomized Design (CRD) then thep

ratio is identical for the two designs:

2
This error term is only appropriate if it can be assumed that σ2

is zero.p( b)

3
It is possible that separate estimates for these components of variation can be obtained from other sources.

4
Note that σ2

and σ2
have slightly different meanings. σ2

is the variability between plots while σ2
. is thep p( b) p p( b)

variability between plots nested within blocks. If blocking is effective then we would expect σ2
to be smallerp( b)

than σ2
.p
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Cox's Ratio for the two designs:

σ2 σ2 or σ2 + σ2 CRD: 4(σ2/σ2) RBD: 4(σ2/(σ2 + σ2 )e p p( b) BT e p e p( b) BT
sssssssssss ssssssssssssssssssssssssssssssssssssssssss ssssssssssssssssssssssssssssss sssssssssssssssssssssssssssssssssssssssssssssssssssssssss

100 100 4 4
100 500 4/5 ≈ 1 4/5 ≈ 1
1000 100 40 40
1000 500 8 8

Under the assumption of equal variances (σ2 = σ2 + σ2 ), the power for the Randomizedp p( b) BT

Block Design will be similar to that of the Completely Randomized Design. There is a slight

reduction in power because the treatment error term has fewer degrees of freedom. To see this

consider these two designs with the same number of plots or blocks per treatment, that is b = p.

Then the degrees of freedom for the error term of the randomized block design is (b-1)(t-1) while

that of the completely randomized design is t(p-1). The difference between these two is t(b-1) -

(p-1)(t-1) = t(b-p) + (p-1) = p-1 or b-1 (since b = p), the degrees of freedom for the blocks. The

reduction in power is generally small as shown by the graph on the left below.

a) b)

Figure 1. Comparing power for the randomized block and completely randomized designs: α = 0.05,
SSM = 125, σ2 = 500, σ2 = 300 and a) σ2 + σ2 = 300 and b) σ2 + σ2 = 200.e p p( b) BT p( b) BT

Mathematically, the removal of b-1 degrees of freedom from the treatment error term

corresponds to a transfer of sums of squares from the error sums of squares to that of the block
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source of variation. If this transfer is 'large' then blocks 'explains' a substantial amount of the

variability in the data (that is, σ2 is greater than zero). Further, the size of the denominator meanB

square is reduced resulting in a more powerful test for treatment differences because the Mean

Square for treatment will have a larger observed F-value. This increase in power is shown by the

graph on the right above where it is assumed that blocking has reduced σ2 + σ2 from 300p( b) BT

to 200. Clearly the power has been increased, although not necessarily by a large amount. The

power would be further increased if blocking had been more effective and reduced σ2 + σ2 top( b) BT

an even greater extent.

Other discussions comparing the Completely Randomized Design and the Randomized Block

Design can be found in Nemec (pgs 18-20) and in texts like Snedecor and Cochran, Kuehl, and

Hinkelmann and Kempthorne.

Contact: Wendy Bergerud
387-5676
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