Appendix A Capacity Analyses

Malahat Capacity Calculations

Highway Characteristics

Highv	vay Classification	Rural Arterial Divided	
Design Speed		80 km/h	
Posted Speed		70 km/h	
		(assume ave speed = 75 km/h)	
Lane Widths		3.5 m	
Distance of Obstructions to Edge of Travelled Way		1 m	
Rural or Suburban Environment		rural	
Commuter/Regular Users vs Recreation/Non- regular Users		Summer: non-regular	
	Goldstream to Tunnel Hill	6 km between 0% and 7%	
		(3 km between 3% and 7%)	
Grades	Tunnel Hill to Summit	8 km between 0% and 5%	
Grades		(2 km between 3% and 5%)	
	Summit to Mill Boy	11 km between 0% and 6.8%	
	Summit to Mill Bay	(2 km of 6.8%)	
Proportion of Heavy Trucks		1.8%	
Proportion of Buses		0.2%	
Proportion of RV's		0.1%	

1 Existing Highway - 2 lane Divided Rural Highway

Use FHWA Rural One-Lane Capacity

One Lane Capacity = (1600pch x PHF x $f_G x f_{HV}$) - V_{NP}

Step 1: Determine PHF (Peak Hour Factor)

At capacity PHF = 1.0

Step 2: Determine f_G (Grade Adjustment Factor)

At capacity two way flow rate will be > 1200 pch Mountainous Terrain

From FHWA Table 6: $f_G = 0.99$

Step 3: Determine f_{HV} (Heavy Vehicle Factor)

 $f_{HV} = 1/(1 + P_T(E_T - 1))$

Where $P_T = 2\%$ trucks and buses ET = 7.2 (from FHWA Table 7)

 $f_{\rm HV} = 0.89$

Step 4: Determine V_{NP} (Volume Adjustment for No Passing Zones)

 $V_{NP} = f_{NP} / 0.00776$

to get f_{NP} we need two way demand flow rate V_P

 $V_{P} =$ <u>Volume at capacity</u> = ~2400 / (.88 x .99 x .89) = 3095 PHF x f_G x f_{HV}

From FHWA Table 8 @ 100% no passing, $f_{NP} = 0.8$

V_{NP} = 0.8 / 0.00776= 103

One Lane Capacity = (1600 pch x PHF x f_G x f_{HV}) - V_{NP}

- = (1600 x 1.0 x 0.99 x 0.89) 103
- = 1307 pch in one direction

2 Multilane Highway – 4-lane divided

Step 1: Calculate Free Flow Speed

 $FFS = BFFS - f_{LW} - f_{LC} - f_{M} - f_{A}$

- BFFS = speed limit + 11 for speed limit 70 km/h = 81 km/h
 - $f_{LW} = 1.0$ km/h (from Exhibit 21-4)
 - $f_{LC} = 2.0$ km/h (from Exhibit 21-5)
 - $f_M = 0.0$ km/h (from Exhibit 21-6)
 - $f_A = 0.0$ km/h (from Exhibit 21-7)
 - FFS = 78 km/h (49 mph)

Step 2: Calculate Base Capacity (BaseCap)

BaseCap =	1000 + 20xFFS; for FFS<=60 mph	
=	2200 for FFS > 60 mph	

BaseCap = 1000 + 20 x 49 1980 pcphpl

Step 3: Determine Peak Capacity (PeakCap)

PeakCap = BaseCap x PHF x N x f_{HV} x f_{P}

- PHF = Peak Hour Factor = 0.95 @ rural capacity (Table 5 FHWA)
 - N = 2 for 4-Lane Divided 3 for 4-Lane Divided with Climbing Lane
 - f_P = 0.95 for mixture of regular and non-regular users (summer)

$$f_{HV} = 1 / (1 + P_T(E_T - 1))$$

- P_T = Proportion of trucks and buses (RV's ignored)
 - = 2%
- $E_T = grade dependent$

Peak Capacity per Direction:

4 Lane Divided					
Grade	Ε _τ	f _{HV}	PeakCap (vph)		
1%	4	0.94	3372		
3%	10	0.85	3029		
5%	14	0.79	2836		
7%	17	0.76	2708		

4 Lane Divided with Passing Lane						
Grade	Ε _τ	f _{HV}	PeakCap (vph)			
1%	4	0.94	5057			
3%	10	0.85	4543			
5%	14	0.79	4255			
7%	17	0.76	4061			