Appendix A

Capacity Analyses

Malahat Capacity Calculations

Highway Characteristics

Highway Classification		Rural Arterial Divided
Design Speed		$80 \mathrm{~km} / \mathrm{h}$
Posted Speed		$\begin{gathered} 70 \mathrm{~km} / \mathrm{h} \\ \text { (assume ave speed }=75 \mathrm{~km} / \mathrm{h} \text {) } \end{gathered}$
Lane Widths		3.5 m
Distance of Obstructions to Edge of Travelled Way		1 m
Rural or Suburban Environment		rural
Commuter/Regular Users vs Recreation/Nonregular Users		Summer: non-regular
Grades	Goldstream to Tunnel Hill	6 km between 0\% and 7\% (3 km between 3% and 7\%)
	Tunnel Hill to Summit	8 km between 0\% and 5\% (2 km between 3\% and 5\%)
	Summit to Mill Bay	11 km between 0\% and 6.8\% (2 km of 6.8\%)
Proportion of Heavy Trucks		1.8\%
Proportion of Buses		0.2\%
Proportion of RV's		0.1\%

1 Existing Highway - 2 lane Divided Rural Highway

Use FHWA Rural One-Lane Capacity
One Lane Capacity $=\left(1600 \mathrm{pch} \times \mathrm{PHF} \mathrm{Xf}_{\mathrm{G}} \times \mathrm{f}_{\mathrm{HV}}\right)-\mathrm{V}_{\mathrm{NP}}$

Step 1: Determine PHF (Peak Hour Factor)

At capacity PHF $=1.0$

Step 2: Determine f_{G} (Grade Adjustment Factor)
At capacity two way flow rate will be > 1200 pch
Mountainous Terrain
From FHWA Table 6: $\mathrm{f}_{\mathrm{G}}=0.99$

Step 3: Determine f_{HV} (Heavy Vehicle Factor)
$\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)\right.$
Where $\mathrm{P}_{\mathrm{T}}=2 \%$ trucks and buses
$\mathrm{ET}=7.2$ (from FHWA Table 7)
$\mathrm{f}_{\mathrm{Hv}}=0.89$

Step 4: Determine V_{NP} (Volume Adjustment for No Passing Zones)
$V_{N P}=f_{N P} / 0.00776$
to get $f_{N P}$ we need two way demand flow rate V_{P}

$$
V_{P}=\frac{\text { Volume }_{\text {at capacity }}}{\text { PHF } \times f_{G} \times f_{H V}}=\sim 2400 /(.88 \times .99 \times .89)=3095
$$

From FHWA Table 8 @ 100\% no passing, $f_{N P}=0.8$

$$
V_{N P}=0.8 / 0.00776=103
$$

One Lane Capacity $=\left(1600\right.$ pch \times PHF $\left.\times f_{G} \times f_{H V}\right)-V_{N P}$
$=(1600 \times 1.0 \times 0.99 \times 0.89)-103$
$=1307$ pch in one direction

2 Multilane Highway - 4-lane divided

Step 1: Calculate Free Flow Speed

$$
\begin{aligned}
\mathrm{FFS} & =\mathrm{BFFS}-\mathrm{f}_{\mathrm{LW}}-\mathrm{f}_{\mathrm{LC}}-\mathrm{f}_{\mathrm{M}}-\mathrm{f}_{\mathrm{A}} \\
\mathrm{BFFS} & =\text { speed limit }+11 \text { for speed limit } 70 \mathrm{~km} / \mathrm{h}=81 \mathrm{~km} / \mathrm{h} \\
\mathrm{f}_{\mathrm{LW}} & =1.0 \mathrm{~km} / \mathrm{h} \text { (from Exhibit 21-4) } \\
\mathrm{f}_{\mathrm{LC}} & =2.0 \mathrm{~km} / \mathrm{h} \text { (from Exhibit 21-5) } \\
\mathrm{f}_{\mathrm{M}} & =0.0 \mathrm{~km} / \mathrm{h} \text { (from Exhibit 21-6) } \\
\mathrm{f}_{\mathrm{A}} & =0.0 \mathrm{~km} / \mathrm{h} \text { (from Exhibit 21-7) } \\
\mathrm{FFS} & =78 \mathrm{~km} / \mathrm{h}(49 \mathrm{mph})
\end{aligned}
$$

Step 2: Calculate Base Capacity (BaseCap)

$$
\begin{aligned}
\text { BaseCap }= & 1000+20 x F F S ; \text { for } F F S<=60 \mathrm{mph} \\
= & 2200 \text { for FFS }>60 \mathrm{mph} \\
\text { BaseCap }= & 1000+20 \times 49 \\
& 1980 \mathrm{pcphpl}
\end{aligned}
$$

Step 3: Determine Peak Capacity (PeakCap)
PeakCap $=$ BaseCap \times PHF $\times N \times f_{H V} \times f_{P}$

$$
\begin{aligned}
\mathrm{PHF}= & \text { Peak Hour Factor }=0.95 @ \text { rural capacity (Table } 5 \text { FHWA) } \\
\mathrm{N}= & 2 \text { for 4-Lane Divided } \\
& 3 \text { for 4-Lane Divided with Climbing Lane } \\
\mathrm{f}_{\mathrm{P}}= & 0.95 \text { for mixture of regular and non-regular users (summer) } \\
\mathrm{f}_{\mathrm{HV}}= & 1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)\right) \\
\mathrm{P}_{\mathrm{T}}= & \text { Proportion of trucks and buses (RV's ignored) } \\
= & 2 \% \\
\mathrm{E}_{\mathrm{T}}= & \text { grade dependent }
\end{aligned}
$$

Peak Capacity per Direction:

4 Lane Divided			
Grade	$\mathbf{E}_{\mathbf{T}}$	\mathbf{f}_{Hv}	PeakCap (vph)
1%	4	0.94	3372
3%	10	0.85	3029
5%	14	0.79	2836
7%	17	0.76	2708

4 Lane Divided with Passing Lane			
Grade	$\mathbf{E}_{\mathbf{T}}$	\mathbf{f}_{Hv}	PeakCap (vph)
1%	4	0.94	5057
3%	10	0.85	4543
5%	14	0.79	4255
7%	17	0.76	4061

