Technical Summary

September 2023

Pit Name: Agate Bay Road

Provincial Pit Number: 2866

Location: The pit is located approximately 3.6 km south of Barriere, BC via Highway 5 and Hanson Road. (Figure 1)

Legal Land Description: The pit is owned by the Ministry of Transportation and Infrastructure and is legally described as Lot 8, District Lot 1319, Kamloops Division Yale District, Plan EPP13936. The geographical coordinates at the center of the pit are Universal Transverse Mercator Grid Zone 10, 701668m Easting, 5669742m Northing. (Figure 2).

Subsurface Investigation: Subsurface investigations at Agate Bay Road Pit were carried out in October 2018 and 2005 by the Ministry of Transportation & Infrastructure.

In 2018 eighteen (18) test pits were excavated to depths ranging from 4m to 6m and in 2005, twenty five (25) test pits were excavated to depths ranging from 4m to 7m. During the test pitting, subsurface soil and groundwater conditions were logged and representative samples of the granular materials were collected for laboratory testing and future reference. Laboratory testing was carried out on seventeen (17) of these samples at Wood PLC laboratories to assess the gradation and durability characteristics. The tests completed were wet sieve analysis, micro-deval, sand equivalent, relative density, and absorption.

Based on the results of the 2018 and 2005 investigations, a suitable granular area for mining has been defined (Figure 3). The detailed results of the subsurface testing are provided in the Test Pit Summaries and test pit locations are shown on the Pit Plan (Figure 3).

Material Gradation: Table 1 shows the gradation as a percentage by weight of the fines (silts and clays), sand and gravel components as well as the Unified Soil Classification (USC [included after test pit summary]) for the samples tested from 2018 and 2005.

Test Pit	Depth (m)	Fines (%)* <0.075mm	Sand (%)* 0.075- 4.75mm	Gravel (%)* 4.75-75mm	USC
	I	20	18		
18-01	2.1-5.0	2.4	61.4	36.2	SP
18-02	0.7-3.1	3.3	71.2	25.5	SP
18-03	0.0-5.0	3.7	40.8	55.5	GP
18-04	0.0-3.1	0.7	57.5	41.8	SP
18-05	0.0-5.0	1.2	49.0	49.8	GP
18-06	0.0-4.8	1.9	44.0	54.1	GP
18-07	0.0-5.0	1.7	44.7	53.5	GP
18-08	0.0-5.0	1.4	64.1	34.5	SP
18-09	0.1-4.0	1.1	61.8	37.2	SP
18-10	0.0-4.5	1.1	53.9	45.0	SP
18-11	0.0-3.5	1.8	54.9	43.3	SP
18-11	3.5-5.0	2.1	73.9	24.0	SP
18-12	0.0-2.5	3.1	74.2	22.6	SP
18-13	0.0-3.2	1.5	69.4	29.1	SP
18-14	0.0-3.0	1.1	65.8	33.2	SP
18-15	0.0-4.5	1.1	63.1	35.7	SP
18-16	0.1-5.0	0.8	73.0	26.2	SP
Ave	rage	1.8	60.2	38.1	SP
		20	05		
TP05-02	3.0-7.0	2.1	51	47	SP
TP05-04	3.5-7.0	1.7	67	31.0	SP
TP05-06	0-6.5.0	1.8	45	53	GP
TP05-12	3.5-5.0	1.3	58	41	SP
TP05-14	0.0-6.5	5.5	56	39	SP
TP05-18	0-7.0	3.0	36	61	GP
TP05-20	0-7.0	1.6	46.9	52	GP
TP05-22	0.0-6.5	2.6	39	58	GP
TP05-24	0-7.0	1.9	50	48	SP
Ave	rage	2.4	49.9	47.8	SP

Table 1: Pit Run Gradation

Oversize Field Estimates: Table 2 shows the estimated percent of oversize rock as noted in the field during exploration.

Table 2: Oversize Field Estimates

2018

Classification:	Average (%)	Range (%)
Boulders (>375mm)	0	0-1
Cobbles (150-375mm)	0.2	0-1
Cobbles (75-150mm)	0.9	0-5

Maximum rock size observed was 200mm.

2005

Classification:	Average (%)	Range (%)
Boulders (>375mm)	0.1	0-1
Cobbles (150-375mm)	1.0	0-4
Cobbles (75-150mm)	3	0-6

Maximum rock size observed was 375mm.

Material Durability: Table 3 shows the results of the durability tests as well as the specifications as required in the Standard Specifications for Highway Construction.

Table 3: Durability Test Results

	Sand	Micro	Abso	rption	Relative Density							
Test Pit	Equivalent Deval (% (%) loss) C/F		Coarse	Fine	Coarse	Fine						
2018												
TP18-03	72.0	10.5/17.9										
TP18-06	72.0	10.2/16.9										
TP18-07			1.08	1.02	2.648	2.626						

TP18-	04.0										
11S1	81.0	9.5/14.4									
TP18-11											
S2	81.0										
BC MoTI Specifications											
Sand E	quivalent	≥40 for base coarse and fine asphalt mix aggregate ≥20 for surfacing, sub-base and bridge end fill aggregates									
Micro) Deval	≤30% for ≤25% f ≤18% for ≤20% for	≤25% for surfacing & base course aggregates ≤25% for surfacing & base course aggregates ≤18% for Class 1 Pavement asphalt mix aggregates ≤20% for Class 2 Pavement asphalt mix aggregates								
Abso	orption	<2.0% for coarse paving aggregates ≤1.0% for coarse and ≤1.5% for fine graded aggregate seals									
Relative	e Density	~2.65 for all aggregate products									

Material Suitability: Based on the 2018 investigation results, the material in the proposed suitability area is judged to be suitable for the following purposes:

Table 4: Suitability

	Pit Run	Crush
Agate Bay Road Suitability area	Bridge End Fill SGSB Winter Abrasive	25mm WGB Medium Asphalt Mix Aggregates GAS

The samples tested meet the gradation, sand equivalent, and micro-deval specifications for base course, bridge end fill and coarse asphalt mix aggregate. Based on the absorption results the samples meet the specification for fine graded aggregate seals; however, did not meet the specifications for coarse graded aggregates. With additional processing, such as crushing the oversize rocks (>75 mm diameter) with the gravel, absorption values may improve. Should the quality improve, the material may then be suitable for other aggregate products.

Sulphate and Chloride Testing

No sulphate and chloride testing has been done in the pit area.

Volume Estimates

Table 6 shows the volume estimates that can be expected for gravel from the proposed suitability area. This is based on the measured depths encountered during the subsurface investigation. The potential volumes of granular material were calculated by averaging the total thickness of granular material encountered in test pits and multiplying by the estimated surface area.

Table 6: Volume Estimates

Suitability Area ~ha.	Topsoil	Overburden	Granular Material
Average Layer Thickness (m)	0.0	0.0	3.7
Volume (m ³)	0	0	140,000

Pit Development Notes

- All development must be carried out in accordance with the Health, Safety, and Reclamation Code for Mines in British Columbia, BC Ministry of Energy and Mines (2022, or later edition), the Standard Specifications for Highway Construction, BC Ministry of Transportation and Infrastructure (2020, or later edition) and the Aggregate Operators Best Management Practices Handbook for BC.
- There are several stockpiles of processed aggregates in the immediate area that the contractor may **not** incorporate into their end products. It will be the responsibility of the contractor to move these stockpiles to an area agreed to by the Aggregate Resource Manager.
- All trees, vegetation, and overburden are to be removed within 2m of the top of the pit faces. Topsoil, overburden, and aggregate cannot be removed within five meters of the reserve boundary.
- The processing area is recommended to be located on the middle bench as identified on the Pit Development Plan (near TPs 18-17 and 18-18), with mining proceeding in a northern and/or northeastern direction as indicated.

- Processed aggregate may be stockpiled to the northeast of the production site, where space permits as indicated on the Pit Development Plan. There is limited stockpile space on the pit floor.
- No dumping of debris or petroleum products will be permitted, and the site must be left in a clean and safe condition.
- At the completion of the pit development operations, but prior to the depletion of the pit, the sides of the pit faces, waste piles, and overburden stockpiles must be trimmed to a 1.5H:1V slope. Active pit faces must be reshaped with native granular materials.
- Upon depletion of the pit, all disturbed areas are to be reclaimed. The minimum reclamation procedure should include re-sloping of the pit faces and waste piles to a 2H:1V slope, contouring the area for appropriate drainage, spreading of overburden followed by topsoil, and seeding.
- Should any of the above conditions conflict with the Health, Safety, and Reclamation Code for Mines in British Columbia, then the Code will prevail.

Closure

The findings of this report and the soil conditions noted above are inferred from the extrapolation of limited surface and subsurface data collected during the site investigation. It should be noted that different and possibly poorer soil conditions may exist between the test pit locations and volume estimates may vary from those reported in this report.

Prepared by:

Reviewed by:

Al Mitchell Aggregate Resource Manager Samantha Kinniburgh Sr Aggregate Resource Specialist

Enclosures

Figures: Figure 1 - Location Plan Figure 2 - Legal Plan Figure 3 - Development Plan Test Pit Logs (2018) Wet Sieve Analysis Charts (2018 and 2005) Aggregate Gradation Charts (2018 and 2005) USC Legend Photos Figures

Document Path: Q:\S.RUIZ_DESIGN\Reference\Grave\GISTemplate_GraveLR2_2021-04-16_GISV8.mxd

This drawing was originally produced in colour.

Test Pit Summaries

PROJECT:		Agate E	kay Road P	it			_			SAM	PLED	BY:	Bryan James		
PII		2866								M	ETHO	0:	Excavator		
DIST	RICT:	Thomps	on Nicola				_	-			DATE:		October 14, 2018		
в	DE	PTH	SAMPLE BAG No.	ESTIMATED MATERIAL	E GR	ADUAT	D	EST	MATED	ROCK	75mm	SAND TYPE	Laboratory Gradations		
	FROM	10		DESCRIPTION	0	8		MAX N25	25inni 15inni	50m-	s275mm	FMC			
18-01	0.0	2.1		GM1	50	35	15	500	1	٥	<1	FM	FI		
	2.1	5.0	252	SP	20	78	2	50	٥	0	0	FM	8P (38.2%), 81.4%8, 2.4%F		
18-02	0.0	0.7		GP	50	48	2	150	5	٥	0	м			
	0.7	3.1	288	SP	10	88	2	50	0	0	0	FM	8P (26.6%), 71.2%8, 3.8%F		
	3.1	4.0		GM3	10	60	30	25	0	0	٥	F			
_	4.0	5.0		SP	10	88	2	50	0	0	0	FM			
18-03	0.0	5.0	115	GP	55	43	2	150	2	0	0	FM	OP (65.6%0, 40.8%8, 3.7%F)		
18-04	0.0	3.1	463	SP	30	68	2	150	<1	0	0	FM	8P (41.8%9, 67.6%8, 0.7%F)		
	3.1	5.0		SM3	0	70	30	5	0	0	0	FM	Some intermixed pieces had high moisture content		
18-05	0.0	5.0	38	GP	50	48	2	200	5	<1	0	FM	OP/SP (48.8%0, 48.0%8, 1.2%		
18-06	0.0	4.8	508	GP	50	48	2	200	2	<1	٥	FM	GP (54.1%G, 44.0%S, 1.9%F)		
18-07	0.0	5.0	17A	GP	50	48	2	200	2	<1	0	FM	OP (53.5%), 44.8%8, 1.7%F)		
18-08	0.0	5.0	256	SP	25	73	2	75	0	0	٥	FM	8P (34.6%3, 64.1%3, 1.4%F) Sand seams throughout		
18-09	0.0	0.1		RAP											
	0.1	4.0	2	SP	25	73	2	150	<1	0	0	FM	8P (97.2%), 61.7% 8, 1.1%F)		
	4.0	5.0		SP	5	93	2	50	0	0	0	FM			
18-10	0.0	4.5	253	SP	30	68	2	150	<1	0	0	FM	8P (46.0%3, 63.9%8, 1.1%F) Test Pit sluffing in		
18-11	0.0	3.5	21	SP	30	68	2	200	2	<1	0	FM	8P (43.3%0, 64.9%8, 1.8%F) Minor fil at top of Test Pit		
	3.5	5.0	79	GP	5	93	2	50	0	0	0	FM	8P (87.9%), 68.6%8, 2.6%F)		
18-12	0.0	2.5	11	SP	10	98	2	25	0	0	٥	FM	8P (22.6%9, 74.3%8, 3.1%F) fin sand seams		
	2.5	4.5	· · · · · ·	SP	2	96	2	12	0	0	0	FM			
18-13	0.0	3.2	218	SP	15	83	2	150	<1	0	0	FM	8P (28.1%), 68.4%8, 1.5%F) Some sand seams		
	3.2	5.0		SP	2	96	2	50	0	0	0	FM			
18-14	0.0	3.0	35	SP	15	83	2	250	<1	<1	0	FM	8P (33.2%), 65.7%3, 1.1%F)		
	3.0	4.5		SP	2	96	2	50	0	0	0	FM			
18-15	0.0	4.5	345	SP	15	83	2	75	٥	0	٥	FM	8P (36.7%3, 63.2%8, 1.1%F)		
18-16	0.0	0.1		Asphalt							1				
	0.1	5.0	61	SP	15	83	2	75	0	0	0	FM	8P(28.2%9, 73.0%8, 0.8%F)		
18-17	0.0	1.0		FIII											
	1.0	3.0		SP	45	53	2	150	<1	0	0	FM	Excavated into side of bank		
18-18	0.0	4.0		SPSM	0	90	10		0	0	0	F			

1	OF	2											
					AC	GR	REG	AT	ΕL	.OG			
PROJ	ECT:		Tolko					S	AMP	LED	BY:		AJ Mitchell
F	PIT #:								N	IETH	OD:		Hyundai 210 LC3
DISTR	RICT:		Thompson							DA	ATE:		06-Jul-05
					FS		D					CAND	
TH / TP	DEF	PTH	SAMPLE	SOILS CLASS	GR	RADATI	DN	ESTIN	IATED I	ROCK	75m m	TYPE	REMARKS
	FROM	TO	BAG No.		G	S	F	MAX SIZE	75mm 150mm	150mm 375mm	375mm	FMC	(PHOTOS)
05-1	0.0	3.0		GP	57	42	1	300	5	2	0	FΜ	
	3.0	6.0		SP	46	53	1	75	1	0	0	FΜ	
05-2	0.0	3.0		GP	57	42	1	300	5	2	0	FΜ	
	3.0	7.0	52643	SP	46.8	51.1	2.1	75	1	0	0	FΜ	Lab Sieve
05-3	0.0	3.5		GP	57	42	1	300	5	2	0	FΜ	
	3.5	7.0		SP	46	53	1	75	1	0	0	FΜ	
05-4	0.0	1.0		GP	63	36.0	1	300	5	1	0		Road bed material
	1.0	3.5		GP	57	42	1	300	5	2	0	FΜ	
	3.5	7.0	52534	SP	31.0	67.3	1.7	75	1	0	0	FΜ	Lab Sieve
05-5	0.0	6.5		GP	57	42	1	300	5	2	0	FΜ	
05-6	0.0	6.5	52536	GP	53.1	45.1	1.8	300	5	2	0	FΜ	Lab Sieve
05-7	0.0	7.0		GP	64	35	1	300	6	4	0	FΜ	
05-8	0.0	7.0		GP	61	38	1	300	5	2	0	FΜ	
05-9	0.0	7.0		SP	11	87	2	37.5	0	0	0	FΜ	
05-10	0.0	4.0		SP	9	89	2	37.5	0	0	0	FΜ	
													07-Jul-05
05-11	0.0	3.0		SP	7	90	3	37.5	0	0	0	F	
	3.0	6.0		ML	3	14	83		0	0	0	F	

2	OF	2											
					AC	GR	REG	AT	ΕL	OG	i		
PROJ	ECT:		Tolko					S	AMP	LED	BY:		AJ Mitchell
F	PIT #:							1	N	IETH	OD:		Hyunai 210 LC3
DISTE	RICT:		Thompson					1		DA	ATE:		07-Jul-05
								-					
тн / тр	DEE	отн	SAMPLE		ES	TIMATE	D	ESTIN		SUCK	75mm	SAND	REMARKS
			SAME EE	SOLS CENSS	GR	ADATI	ON	MAX	75mm	150mm	/ 511111	TYPE	REM/IRRS
	FROM	TO	BAG No.		G	S	F	SIZE	150mm	375mm	375mm	FMC	(PHOTOS)
05-12	0.0	3.5		GP	58	41	1	300	6	2	0	MC	
	3.5	5.0	52537	SP	40.9	57.8	1.3	300	6	2	0	M	Lab Sieve
	5.0	7.0		SP	11	88	1	75	1	0	0	FΜ	
05-13	0	6.0		GP	58	41	1	300	6	2	0	М	Hole Sluffing badly
05-14	0.0	6.5	52569	SP/SM	38.9	55.6	5.5	75	0	0	0	FΜ	Lab Sieve
05-15	0.0	3.5		GP	62	37	1	300	4	1	0	МC	
	3.5	6.5		SP	11	87	2	75	0	0	0	FΜ	
05-16	0.0	2.0		GP	58	41	1	150	4	0	0	М	
	2.0	7.0		SP	10	88	2	75	0	0	0	FΜ	
05-17	0.0	2.0		GP	54	45	1	150	3	0	0	М	
	2.0	6.5		SP	10	88	2	75	0	0	0	FΜ	
05-18	0.0	7.0	52600	GP	60.7	36.3	3.0	375	5	3	1	M	Lab Sieve
05-19	0.0	3.5		GP	62	37	1	300	4	1	0	M	
	35.0	6.0		SP	11	87	2	75	0	0	0	ΓM	
05.00		7.0				40.0		075	•	-	4		
05-20	0.0	7.0	52330	GP	51.5	46.9	1.6	375	6	3	1	M	Lab Sieve
05.04													
05-21	0.0	2.0						000		_			Wood debris
	2.0	6.5		GP	63	36	1	300	4	2	0	M	
05.00	0.0	C F	E4000	CD	50.0	20.0	2.0	200	2	1	0	5.4	Lah Ciara
05-22	0.0	0.0	51203	GP	50.2	39.2	2.0	300	<u> </u>	1	0	IVI	Lab Sieve
05.02		1.0											Wood dobrio
05-23	1.0	2.0		CP	56	12	1	300	2	1	0	E 14	
	2.0	2.0			20	43	۱ ۵۸	300	<u>э</u>		0		
	2.0	0.0			3	13	04		U	0	0		
05.24	0.0	7.0	50900	GB/SD	19.4	10.7	10	300	2	1	0	N/	Lab Sign
05-24	0.0	7.0	50809	GF/SP	40.4	49.7	1.9	300	2	1	0	IVI	Lap Sieve
05.25	0.0	6.0		GP	64	35	1	375	6	2	1	N4	
00-20	0.0	0.0		Gr	04	55	- '	515	0	2			

Wet Sieve Analysis

2018

Sam	ple Inform	ation							Pe	rcent Pass	ing						
Test Pit	Depth	Bag #	1						Pit Run	Sieve Siz	es (mm)						
	(m)		100 75 50 37.5 25 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15										0.15	0.075			
18-03	0.0-5.0	116	100.0	100.0	90.9	83.1	73.4	66.6	58.8	55.2	44.5	36.9	30.4	23.1	12.4	6.2	3.7
18-05	0.0-5.0	38	100.0	100.0	88.7	83.8	74.4	68.9	63.5	59.3	50.2	42.4	35.2	25.5	10.2	2.9	1.2
18-06	0.0-4.8	508	100.0	100.0	90.6	81.4	72.7	67.3	59.5	54.8	45.9	39.3	33.2	24.5	10.6	3.8	1.9
18-07	0.0-5.0	17A	100.0	100.0	89.8	83.6	72.8	67.3	60.2	55.9	46.5	39.1	32.7	24.0	10.0	3.3	1.7
	MAX		100.0	100.0	90.9	83.8	74.4	68.9	63.5	59.3	50.2	42.4	35.2	25.5	12.4	6.2	3.7
	MIN		100.0	100.0	88.7	81.4	72.7	66.6	58.8	54.8	44.5	36.9	30.4	23.1	10.0	2.9	1.2
-	AVERAGE	1	100.0	100.0	90.0	83.0	73.3	67.5	80.5	56.3	45.8	20.4	32.0	212	10.8	44	24

Sam	ple Inform	ation							Pe	rcent Pass	sing						
Test Pit	Depth	Bag #	1				- 72-		Pit Run	Sieve Siz	es (mm)		_				
	(m)			75	-50	37.5	25	19	12.5	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
18-04	0.0-3.1	463	100.0	100.0	92.5	86.6	80.5	75.1	69.7	66.6	58.2	51.3	44.0	31.5	9.8	1.7	0.7
18-08	0.0-5.0	256	100.0	100.0	98.2	91.6	84.2	79.1	75.8	72.5	65.5	59.8	53.9	42.5	16.9	3.8	1.4
18-09	0.1-4.0	2	100.0	100.0	94,9	91.1	84.8	80.5	73.2	70.2	62.8	57.0	50.9	38.8	13.6	2.6	1.1
18-10	0.0-4.5	253	100.0	94.4	87.9	81.7	75.0	70.9	65.9	63.0	55.0	48.1	41.6	31.0	10.8	2.3	1.1
18-11	0.0-3.5	21	100.0	100.0	91.6	90.5	81.7	75.1	68.5	64.9	56.7	49.5	42.4	31.0	10.9	3.2	1.8
18-12	0.0-2.5	11	100.0	100.0	100.0	99.3	92.6	89.2	86.5	83.9	77.4	72.0	66.1	53.5	23.8	7.2	3.1
18-13	0.0-3.2	218	100.0	100.0	94.0	92.1	96.6	84.0	79.5	77.1	70.9	64.6	57.8	45.2	16.9	3.6	1.5
18-14	0.0-3.0	35	100.0	100.0	91.4	89.2	83.0	79.6	75.8	72.4	66.8	61.7	56.1	44.9	17.1	3.0	1.1
18-15	0.0-4.5	345	100.0	100.0	91.6	87.6	83.5	80.4	75.6	72.0	64.3	58.8	53.2	42.0	16.5	3.6	1.1
18-16	0.1-5.0	61	100.0	100.0	95.7	94.7	90.2	86.7	84.0	80.5	73.8	66.7	59.5	45.7	15.6	2.4	0.8
	MAX	0.04000	100.0	100.0	100.0	99.3	92.6	89.2	86.5	83.9	77.4	72.0	86.1	53.5	23.8	7.2	3.1
	MIN		100.0	94.4	87.9	81.7	75.0	70.9	65.9	63.0	55.0	48.1	41.6	31.0	9.8	1.7	0.7
	AVERAGE		100.0	99.4	93.6	90.4	84.2	80.1	75.5	72.3	65.1	59.0	52.6	40.6	15.2	3.3	1.4

Aggregate Gradation Charts

	Ministry of Transportation 441 Columbia Street Kamloops, BC V2C 2TC		Project No: KX12957 Date: July 19, 2005 Client P.O.: CC:	-200
	Attn : Project Name:	Mr. Bryan James		
Test No.:	05-104-09	Source: Tolko Pit TP05-2 @ 3-7m		Sample Type: Pit Run
Date Sample	d: July 7, 2005	By: Client	Date Tested: July 12,	2005

MoT Bag : 52643 = 15.2 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

	Ministry of Transportatior 441 Columbia Street Kamloops, BC V2C 2TC	1	Project No: KX12957 Date: July 12, 2005 Client P.O.: CC:	-200
	Attn : Project Name:	Mr. Bryan James		
Test No.:	05-104-03	Source: Tolko Pit TP05-4 @ 3.5-7m		Sample Type: Pit Run
Date Sample	d: July 6, 2005	By: Client	Date Tested: July 11,	2005

MoT Bag : 52334 = 19.6 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

	Ministry of Transportatior 441 Columbia Street Kamloops, BC V2C 2TC	1	Project No: KX12957 Date: July 12, 2005 Client P.O.: CC:	-200
	Attn :	Mr. Bryan James		
	Project Name:			
Test No.:	05-104-02	Source: Tolko Pit TP05-6 @ 0-6.5m		Sample Type: Pit Run
Date Sample	d: July 6, 2005	By: Client	Date Tested: July 12,	2005

MoT Bag : 52536 = 19.2 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

	Ministry of Transportation 441 Columbia Street Kamloops, BC V2C 2TC Attn : Project Name:	Mr. Bryan James	Project No: KX12957 Date: July 19, 2005 Client P.O.: CC:	-200
Test No.:	05-104-05	Source: Tolko Pit TP05-12 @ 3.5-5m		Sample Type: Pit Run
Date Sample	d: July 7, 2005	By: Client	Date Tested: July 11,	2005

MoT Bag : 52537 = 17.8 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

	Ministry of Transportation 441 Columbia Street Kamloops, BC V2C 2TC	1	Project No: KX12957 Date: July 19, 2005 Client P.O.: CC:	-200
	Attn :	Mr. Bryan James		
	Project Name:			
Test No.:	05-104-08	Source: Tolko Pit TP05-14 @ 0-6.5m		Sample Type: Pit Run
Date Sample	d: July 7, 2005	By: Client	Date Tested: July 12,	2005

MoT Bag : 52569 = 14.6 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

		Ministry of Transpo 441 Columbia Stree Kamloops, BC V2C 2TC	rtation et		Project N Date: July Client P.C CC:	o: KX12957- y 12, 2005).:	200		
		Attn :	Mr. Bryan James						
		Project Name:							
Test N	o.:	05-104-01	Source: Tolko Pit	- TP05-18 @ 0-7m			Sample T	ype: Pit F	Run
Date S	ample	ed: July 7, 2005	By: Clien	t	Date Tes	ted: July 12,	2005		
						Agence of a M	lach Sigur	Analysi	
			Wash Analysis		<i>F</i>	Wash Analy	asn Sleve	Analysi	5
			Wash Analysis		Sieve	Percent	Percent	l in	nits
	100.0				Size	Ret.	Pass	Upper	Lower
	100.0								
	90.0				75.0	0.0	100.0		
	30.0				50.0	22.1	77.9		
	80.0				37.5	7.1	70.9		
	0010			^	25.0	5.2	65.7		
%	70.0				19.0	7.1	58.6		
				\$	12.5	5.6	53.0		
P	60.0				9.5	4.7	48.3		
'					4.75	9.0	39.3		
	50.0				2.30	7.4	32.0		
					1.18	5.5	20.5		
1	40.0				0.000	0.2	20.2		
, i					0.300	5.5	5.1		
	30.0				0.075	2.1	3.0		
9	<u> </u>				PAN	3.0	0.0		
	20.0					0.0			
	10.0							I	
	10.0								
	0.0								

Sieve Mass (g): 18510.2

MoT Bag : 52600 = 19.0 Kg

0.1

0.0

AMEC Earth & Environmental

B.Jackman, C.Tech

100.0

Per:

Reporting of these test results constitutes a testing service only. Engineering interpretation or evaluation of the test results is provided only on written request.

10.0

1.0 Grain Size (mm)

	Ministry of Transportation 441 Columbia Street Kamloops, BC V2C 2TC	1	Project No: KX12957 Date: July 19, 2005 Client P.O.: CC:	-200
	Attn :	Mr. Bryan James		
	Project Name:			
Test No.:	05-104-07	Source: Tolko Pit TP05-20 @ 0-7m		Sample Type: Pit Run
Date Sample	d: July 7, 2005	By: Client	Date Tested: July 11	2005

MoT Bag : 52330 = 20.2 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

	Ministry of Transpor 441 Columbia Stree Kamloops, BC V2C 2TC	tation It	Project No: KX12957-200 Date: July 19, 2005 Client P.O.: CC:
	Attn :	Mr. Bryan James	
	Project Name:		
Test No.:	05-104-10	Source: Tolko Pit TP05-22 @ 0-6.5m	Sample Type: Pit Run
Date Samp	led: July 7, 2005	By: Client	Date Tested: July 12, 2005
[
		Week Analyzia	Aggregate wash Sieve Analysis

MoT Bag : 52636 = 16.8 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

	Ministry of Transportatior 441 Columbia Street Kamloops, BC V2C 2TC	1	Project No: KX12957 Date: July 19, 2005 Client P.O.: CC:	-200
	Attn :	Mr. Bryan James		
	Project Name:			
Test No.:	05-104-04	Source: Tolko Pit TP05-24 @ 0-7m		Sample Type: Pit Run
Date Sample	d: July 7, 2005	By: Client	Date Tested: July 11,	2005

MoT Bag : 50809 = 14.6 Kg

AMEC Earth & Environmental

B.Jackman, C.Tech

Per:

USC Legend

	MATERIALS CLASSIFICATION LEGEND				
1	MAJ DIVIS	OR IONS	SYMBOL	SOIL TYPE	
		Ŋ	GW	WELL GRADED GRAVELS OR GRAVEL-SAND	
	OILS	AND Soll	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND	
) N	RAVEL	GM*	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES	
	AINEI	GR4 GR4	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES	
	GR∕	(0	SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES	
	SE	AND SOILS	SP	POORLY–GRADED SANDS OR GRAVELLY SANDS, < 5% FINES	
	COAF	SAND ANDY	SM*	SILTY SANDS SAND-SILT MIXTURES	
	0	τ. Ο	SC*	CLAYEY SANDS SAND-CLAY MIXTURES	
	(0)	ND <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY	
	SOILS	SILTS AI AYS wL	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	
	١ED	CL	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY	
	GRAIN	4ND >50	МН	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS	
	INE	LTS / `S «L	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	
	LL.	SI	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS	
	ORG SO	ANIC ILS	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS	
	TOP	SOIL	TS	TOPSOIL WITH ROOTS, ETC.	
	COB	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm	
	LAF BOUL	RGE DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm	
	BEDF	ROCK	BR	BEDROCK	
	FOR SOILS HAVING 5 - 12% PASSING .075 SIEVE, USE DUAL SYMBOL *GM1; GC1; SM1; SC1; 12 - 20% GM2; GC2; SM2; SC2; 20 - 30% GM3; GC3; SM3; SC3; 30 - 40% GM4; GC4; SM4; SC4; 40 - 50% PASSING .075mm SIEVE				
				REV. 90-04-26	
				Geotechnical & Materials Engineering	
				UNIFIED SOIL CLASSIFICATION	

LEGEND

Drawn: LU Date: JULY'97 Scale: File No.: ACAD File: ACADSTDS Photos

Test Pit 18-01 (fill overlying sand at 2.1metres)

Test Pit 18-01 Spoil (0.0 to 2.1 metres)

Test Pit 18-01 Spoil (2.1 to 5.0 metres)

Test Pit 18-02 (medium to fine sand to 5.0 metres)

Test Pit 18-02 Spoil (SM³ between shovel and stake)

Test Pit 18-03 (coarse gravel to 5.0 metres)

Test Pit 18-03 Spoil (0.0 to 5.0 metres)

Test Pit 18-04 (sand underlain by SM³ at 3.1 metres)

Test Pit 18-04 Spoil (0.0 to 3.1 metres)

Test Pit 18-05 (gravel to 5.0 metres)

Test Pit 18-05 Spoil

Test Pit 18-06 (gravel to 4.8 metres)

Test Pit 18-06 Spoil (0.0 to 4.8 metres)

Test Pit 18-07 (gravel to 5.0 metres)

Test Pit 18-07 Spoil (0.0 to 5.0 metres)

Test Pit 18-08 Spoil (0.0 to 5.0 metres)

Test Pit 18-09 Spoil (0.1 to 4.0 metres)

Test Pit 18-10 (sand to 4.5 metres)

Test Pit 18-10 Spoil (0.0 to 4.5 metres)

Test Pit 18-11 (sandy gravel underlain by sand at 3.5 metres, minor fill at top of photo)

Test Pit 18-11 Spoil (sandy gravel to 3.5 metres)

Test Pit 18-11 Spoil (sand from 3.5 to 5.0 metres)

Test Pit 18-12 (sand to 4.5 metres)

Test Pit 18-12 Spoil (0.0 to 2.5 metres)

Test Pit 18-13 (Sand underlain by fine sand at 3.2 metres)

Test Pit 18-13 Spoil (3.2 to 5.0 metres)

Test Pit 18-14 (sand underlain by fine sand at 3.0 metres)

Test Pit 18-14 Spoil (0.0 to 3.0 metres)

Test Pit 18-14 Spoil (3.0 to 5.0 metres)

Test Pit 18-15 (sand to 4.5 metres)

Test Pit 18-15 Spoil (0.0-4.5 metres)

TP 18-16 (sand 0.1 to 5.0 metres)

Test Pit 18-16 Spoil (0.1 to 5.0 metres)

Test Pit 18-17 (fill overlaying gravel at 1.0 metres)

Test Pit 18-18 Spoil (fine sands to 4.0 metres)

Test Pit 18-07 (Area A crusher location to the left of photo)

Area B (potential screening plant location)

Technical Summary

August 2023

Pit Name: Larsen Hill

Provincial Pit Number: 0284

Location: The pit is located approximately 5km north of McClure Ferry Road on the east side of Highway 5. (Figure 1).

Legal Land Description: The pit is legally described as District Lot 3900, KDYD except part of Plan A852. The pit is covered by a Crown Land Act Section 16 Map Reserve in the name of the Ministry of Transportation and Infrastructure. The Map Reserve is 56.788 hectares in size. The geographical coordinates are Universal Transverse Mercator Grid Zone 10, 695946 Easting, 5661598 Northing. The layout of the Map Reserve boundary is shown in the pit plan (Figure 2).

Subsurface Investigation: Subsurface investigations at Larsen Hill Pit were carried out in August 2015 and 1998 by the Ministry of Transportation & Infrastructure.

In 2015 twenty-seven (27) test pits were excavated to depths ranging from 1.6m to 4.8m and in 1998, eleven (11) test pits were excavated to depths ranging from 1.2 to 6.0m. During the test pitting, subsurface soil and groundwater conditions were logged and representative samples of the granular materials were collected for laboratory testing and future reference. Laboratory testing was carried out on eight (8) of these samples at Wood PLC laboratories to assess the gradation and durability characteristics. The tests completed were wet sieve analysis, micro-deval, sand equivalent, relative density, and absorption.

Based on the results of the 2015 and 1998 investigations, a suitable granular area for mining has been defined (Figure 3). The detailed results of the subsurface testing are provided in the Test Pit Summaries and test pit locations are shown on the Pit Plan (Figure 3).

Material Gradation: Table 1 shows the gradation as a percentage by weight of the fines (silts and clays), sand and gravel components as well as the Unified Soil Classification (USC [included after test pit summary]) for the samples tested from 2015 and 1998.

Test Pit	Depth (m)	Fines (%)* <0.075mm	Sand (%)* 0.075- 4.75mm	Gravel (%)* 4.75-75mm	USC
		19	98		
TP98-01	0.3-2	1.7	48.3	49.9	GP
TP98-02	0.3-6	6.9	7.8	85.3	GP-GM
TP98-03	0.2-6	n/a	n/a	n/a	n/a
TP98-04	0.3-5.5	2.4	11.3	86.4	GW
TP98-05	0.3-5.5	1.9	12.5	85.6	GW
TP98-06	0.3-5.5	2.5	43.9	53.6	GP
TP98-07	4.2-5.5	1.7	96.3	2.1	SP
TP98-08	0-4.5	0.6	32.1	67.3	GW
TP98-09	0.2-1.8	21.1	78.8	0.2	SM2
TP98-10	3-5.5	0.8	45.2	54	GP
TP98-11	2-5	1.7	49.9	48.5	SP
Ave	rage	4.1	42.6	53.3	GP
		20	15		
TP15-02	0.1-4	2.7	8.9	88.4	GW
TP15-05	0-2.8	0.7	62.8	36.5	SP
TP15-07	0-3	0.9	52.4	46.7	SP
TP15-10	0.3-4	0.9	52.6	46.5	SP
TP15-13	1.5-3.8	1.7	37	61.3	GP
TP15-15	1.5-3.2	0.7	77.8	21.5	SP
TP15-16	0.4-1.2	2.6	64.9	32.5	SP
TP15-19	0.8-3.8	1.7	26.8	71.5	GW
Ave	rage	0.7	54.7	44	SP

Table 1: Pit Run Gradation

Oversize Field Estimates: Table 2 shows the estimated percent of oversize rock as noted in the field during exploration.

Table 2: Oversize Field Estimates

2015

Classification:	Average (%)	Range (%)
Boulders (>375mm)	1	0-2
Cobbles (150-375mm)	5.4	1-20
Cobbles (75-150mm)	1.2	1-15

Maximum rock size observed was 500mm.

1998

Classification:	Average (%)	Range (%)
Boulders (>375mm)	2.5	0-10
Cobbles (150-375mm)	8.2	1-15
Cobbles (75-150mm)	10.8	3 – 15

Maximum rock size observed was 800mm.

Material Durability: Table 3 shows the results of the durability tests as well as the specifications as required in the Standard Specifications for Highway Construction.

Table 3: Durability Test Results

	Sand	Micro	Abso	rption	Relative Density			
Test Pit	Equivalent	Deval (% loss)	Coarse	Fine	Coarse	Fine		
			2015					
TP15-02		7.0/17.3						
TP15-07			0.82	1.41	2.803	2.672		
TP15-13		5.8/17.3						
TP15-16			1.11	1.48	2.748	2.649		
		BC MoTI	Specifica	tions				
Sand E	quivalent	≥40 for ba ≥20 foi	ase coarse ^r surfacing,	and fine as sub-base a aggregates	phalt mix aç and bridge e	ggregate end fill		
Micro	o Deval	≤30% fo ≤25% t ≤18% for ≤20% for	r sub-base for surfacin Class 1 Pa Class 2 Pa	and bridge g & base co vement asp vement asp	end fill aggr ourse aggre ohalt mix ag ohalt mix ag	regates gates gregates gregates		
Absorption		<2 ≤1.0% for c	2.0% for co coarse and	arse paving ≤1.5% for f seals	aggregates	s aggregate		
Relativ	e Density	~2.65 for all aggregate products						

Material Suitability: Based on the 2015 investigation results, the material in the proposed suitability area is judged to be suitable for the following purposes:

Table 4: Suitability

	Pit Run	Crush
Larsen Hill Suitability area	Bridge End Fill SGSB Winter Abrasive	25-50mm WGB Asphalt Mix Aggregates

The samples tested meet the gradation, sand equivalent, and microdeval specifications for base course, bridge end fill and asphalt mix aggregate.

Sulphate and Chloride Testing

No sulphate and chloride testing has been done in the pit area.

Volume Estimates: Table 6 shows the volume estimates that can be expected for topsoil, overburden and gravel from the proposed suitability area. This is based on the measured depths encountered during the subsurface investigation. The potential volumes of granular material were calculated by averaging the total thickness of granular material encountered in test pits and multiplying by the estimated surface area.

Table 6: Volume Estimates

Suitability Area ~ha.	Topsoil	Overburden	Granular Material			
Average Layer Thickness (m)	0.0	0.2	3.0			
Volume (m ³)	0	3,000	80,000			

Pit Development Notes

- All development must be carried out in accordance with the Health, Safety, and Reclamation Code for Mines in British Columbia, BC Ministry of Energy and Mines (2022, or later edition), the Standard Specifications for Highway Construction, BC Ministry of Transportation and Infrastructure (2020, or later edition) and the Aggregate Operators Best Management Practices Handbook for BC.
- All trees, vegetation, and overburden are to be removed within 2m of the top of the pit faces. Topsoil, overburden, and aggregate cannot be removed within five meters of the reserve boundary.
- It may be necessary to bulldoze granular material to the production site from above the BC Hydro transmission line in order to mitigate excessively high pit faces. The contractor is responsible for obtaining a 30M33 Permit before stripping the overburden and pushing material through the Right of Way. Access to and along the transmission line Right of Way <u>must</u> <u>be maintained at all times</u>.
- The crusher is recommended to be located on the upper bench as identified on the Pit Development Plan (between TPs 15-06 and 15-02), with mining proceeding in an eastern and/or southern direction as indicated.
- Processed aggregate may be stockpiled to the southwest of the production site, where space permits as indicated on the Pit Development Plan. There is limited stockpile space on the pit floor.
- No dumping of debris or petroleum products will be permitted, and the site must be left in a clean and safe condition.
- At the completion of the pit development operations, but prior to the depletion of the pit, the sides of the pit faces, waste piles, and overburden stockpiles must be trimmed to a 1.5H:1V slope. Active pit faces must be reshaped with native granular materials.
- Upon depletion of the pit, all disturbed areas are to be reclaimed. The minimum reclamation procedure should include re-sloping of the pit faces and waste piles to a 2H:1V slope, contouring the area for appropriate drainage, spreading of overburden followed by topsoil, and seeding.

• Should any of the above conditions conflict with the Health, Safety, and Reclamation Code for Mines in British Columbia, then the Code will prevail.

Closure

The findings of this report and the soil conditions noted above are inferred from the extrapolation of limited surface and subsurface data collected during the site investigation. It should be noted that different and possibly poorer soil conditions may exist between the test pit locations and volume estimates may vary from those reported in this report.

Prepared by:

Reviewed by:

Samantha Kinniburgh Senior Aggregate Resource Specialist Al Mitchell Aggregate Resource Manager

Enclosures

Figures: Figure 1 - Location Plan Figure 2 - Legal Plan Figure 3 - Development Plan Test Pit Logs (2015) Wet Sieve Analysis Chart (2015 and 1998) Aggregate Gradation Charts (2015 and 1998) USC Legend Photos Figures

This drawing was originally produced in colour.

This drawing was originally produced in colour.

Province of British Columbia Ministry of Transportation GEOTECHNICAL and MATERIALS ENGINEERING

		REVISIONS	Initial
	Date	Description	
	OCT 00	New Border	
	JUN 19	Updated Notes	
2			
	L		

À.T.À.

PROVED BY

<u>Ġ.Ŗ.Ń.</u>

DRAWN:

AutoCAD:

DATE:

DGS

FEB 00

F30284

LEGEND

MINING NOTES

 All vegetation, topsoil and overburden is to be stripped a minimum of 2 metres back from active pit faces. - Topsoil and overburden is to be stockpiled and seeded with grass. Removal of this material is not permitted. - At the completion of mining activities, all pit faces are to be sloped to a minimum of 1 1/2 to 1 with native granular material.

 For projects mining in excess of 1,000 cubic metres, the Ministry of Energy Mines (Mines Division) must be notified (approximately 14 days prior to the commencement of mining). All reject material, resulting from aggregate production, is to be placed in neat, easily accessible stockpiles free of deleterious material (i.e. wood waste).

No dumping of Demolition, Land Clearing and Construction debris is permitted without prior written approval of the Ministry of

Test Pit Summaries

1	OF	3											
					AG	GR	EGA	ΤE	LC)G			
PRO.	JECT:	Vinsul	la passing l	anes				5	SAMF	PLED	BY:		Paul Imada
	PIT #:	Larson	n Hill					_	N	IETH	IOD:		Excavator
DIST	RICT:	The	ompson Ni	cola				_		D	ATE:		2015-08-31 to 9-2
TH / TP	DEI	ртн	SAMPLE	SOILS CLASS	ESTIM	ATED GRA	DATION	EST	IMATED	IATED ROCK 75mm		SAND TYPE	REMARKS
	FROM	то	BAG No.		G	s	F	MAX SIZE	75mm 150mm	150mm - 375mm	375mm	F M C	
15-01	0	0.1		TS									
	0.1	3.5		GP	92	6	2	550	15	5	2		sloughed
15-02	0	0.1		TS									
	0.1	4	TRAN 68	GP	90	7	3	375	10	2			sloughed
				GP	88.4	8.9	2.7						
15-03	0	0.1		TS									
	0.1	3.6		GP	92	6	2						
15-04	0	0.3		TS									dug into road cut
	0.3	1.6		SP	11	88	1	175	2	1			
	_												
15-05	0	2.8	TRAN 31	SP	6	93	1	75					At 15-4 on road
				SP	36.5	62.7	0.8						sloughed
	-												
15-06	0	1.5		GP	89	8	3	375	15	5	1		on road
	1.5	3.6		GP	83	16	1	150	5				sloughed
45.07			TDANTO	0.0				450	-			0.5	
15-07	0	3	TRAN/0	GP	60	38	2	150	5			C-F	on road - sloughed
				500	46.7	52.4	0.9						
15.09	0	27		CP	62	25	2	200	1	1		СF	on road aloughod
13-00	0	5.7		GF	02	- 55	5	200	<u> </u>			0-i	on road - sloughed
15-09	0	01		TS									
10 00	01	0.4		GP	91	5	4	200	5	1			
	0.4	4		GP	94	5	1	250	15	1			sloughed
15-10	0	0.1		TS									
	0.1	0.3		ML	10	40	50						
	0.3	4	TRAN 69	GP	52	47	1	200	1	1		C-F	sloughed
				SP	46.5	52.6	0.9						ÿ
	1												
15-11	0	0.2		TS									
	0.2	3		GP	61	37	2	150	2			C-F	sloughed - i/b SP/GP
					İ		İ			1			-

2		3													
					AG	GRE	EGA	TE	LC	G					
PROJ	ECT:	Vinsull	a passing l	anes				5	SAMPLED BY:		BY:		Paul Imada		
F	PIT #:	Larsor	n Hill						Ν	IETH	IOD:		Excavator		
DIST	RICT:	Tho	ompson Ni	cola						D	ATE:		2015-08-31 to 9-2		
TH / TP	DEF	PTH	SAMPLE	SOILS CLASS	ESTIMA	ATED GRA	DATION	EST	MATED	ROCK 75mm		ROCK 75mm		SAND TYPE	REMARKS
	FROM	TO	BAG No.		G	S	F	MAX SIZE	75mm 150mm	150mm - 375mm	375mm	F M C			
15-12	0	0.1		TS											
	0.1	1.5		GP	63	35	2	150	5						
	1.5	3.6		SP	18	80	2						sloughed		
15-13	0	0.1		TS											
	0.1	1.5		GP	61	37	2	150	1			C-F			
	1.5	2	TRAN 61	GP	81	17	2	150	7						
	2	3.8	TRAN 61	SP	23	75	2	75				C-F	sloughed		
				GP	61.3	37	1.7								
15-14	0	0.1		TS											
	0.1	1		GP-GM	64	28	8	200	1	1					
	1	3.8		GP	76	22	2	200	10	1					
	3.8	4		SP	7	91	2						sloughed		
15-15	0	0.1		TS											
	0.1	0.5		GM1	62	25	13	100	1						
	0.5	1.5		GP	67	31	2	100	1						
	1.5	3.2	TRAN 66	SP	9	89	2					M-C			
				SP	21.5	77.8	0.7								
	3.2	4.6		SP	3	96	1					M-C			
	4.6	4.7		GP	52	47	1						sloughed		
15-16	0	0.1		TS											
	0.1	0.4		GP-GM	64	25	11	150	1						
	0.4	1.2	TRAN 65	GP	51	47	2	150	2						
	1.2	3		SP	9	89	2					M-C	sloughed		
				SP	32.6	64.8	2.6								
15-17	0	3		FILL				200	1	1			sand to LB and AC		
	3	4.8		SP	18	80	2								
15-18	0	0.8		FILL				400			1		GP		
	0.8	1.9		FILL									SP		
	1.9	4.6		GM1	83	4	13	300	20	2					

3		3																					
					AG	GR	EGA	TE	LC	G													
PROJ	ECT:	Vinsull	a passing l	anes				SAMPLED BY:					Paul Imada										
F	PIT #:	Larson	n Hill						Ν	IETH	IOD:		Excavator										
DISTI	RICT:	Tho	mpson Ni	cola						D	ATE:		2015-08-31 to 9-2										
TH / TP	DE	РТН	SAMPLE	SOILS	ESTIMA	ATED GRA	DATION	EST	MATED	ROCK 75mm		ROCK 75mm		ROCK 75mm		ROCK 75mm		ROCK 75mm		ROCK 75mm		SAND	REMARKS
	FROM	то	BAG No.	CLASS	G	s	F	MAX SIZE	75mm 150mm	150mm - 375mm	375mm	F M C											
15-19	0	0.4		FILL									rock chips										
	0.4	0.8		FILL	30	30	40						ML-CL										
	0.8	3.8		GP	63	32	5	150	2				sloughed										
				GP	71.6	26.7	1.7																
15-20	0	0.2		AC																			
	0.2	1.3		FILL																			
	1.3	3		GP	54	44	2	150	2				sloughed										
15-21	0	0.4		GP	67	31	2																
	0.4	1		SP	13	85	2																
	1	2.3		GP	51	47	2	150	6														
	2.3	4		SP	10	88	2																
	4	4.8		SP	1	98	1				М												
15-22	0	3.5	GP	83	15	2	250	3	1				sloughed										
15-23	0	3.5	GP	79	19	2	500	5	5	1													
15-24	0	0.5	GP										pushed by Cat										
	0.5	1.6	SP	2	96	2																	
	1.6	4	SP	15	83	2	300	10	15			М											
15-25	0	0.4		FILL	75	22	3	200	1	1													
	0.4	4.8		SP	0	98	2					F-M											
15-26	0	0.5		FILL	65	32	3	100	1														
	0.5	4.8		SP	0	98	2	<u> </u>				F-M											
15-27	0	0.9		FILL	65	62	3																
	0.9	3.2		GP	85	13	2	300	1	1													
	3.2	3.5		SP	0	98	2					F-M	sloughed										
TP 17, 18, 19, and 20 dug on upper level																							
TP 21, 2	2, 23, a	and 24	dug on mi	d level																			
TP 25, 2	6, and	27 dug	on lower	pit floor																			

Wet Sieve Analysis

2015

PROJECT REPORT OF																	
SIEVE AN	ALYSIS SU	MMARIE	S						PERC	ENT PAS	SING						
Project:		Larson Hill							F	Project No.:							
Sample Sour	ce:									Client:		MOT					
Material:			Pit Run							Date:		Dec. 1/15					
Sa	mple Informa	tion							Pe	Percent Passing							
Test Pit	Bag #	Depth							Pit Rur	Sieve Size	s (mm)						
		(m)	75	63	50	37.5	25	19	12.5	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
TP 15-02	68	.1-4	100.0	100.0	85.7	77.0	56.9	44.3	29.5	21.4	11.6	7.8	5.9	4.6	3.8	3.3	2.7
TP15-05	31	0-2.8	100.0	100.0	91.8	87.5	82.7	78.2	74.6	71.1	63.5	56.0	39.4	13.7	2.7	1.2	0.7
TP15-07	70	0-3	100.0	100.0	97.4	91.9	84.9	77.3	69.2	63.5	53.3	43.8	28.2	7.1	2.0	1.3	0.9
TP15-10	69	.3-4	100.0	100.0	100.0	99.1	92.0	84.7	73.2	67.0	53.5	44.4	34.0	19.1	6.7	2.2	0.9
TP15-13	61	1.5-3.8	100.0	100.0	98.6	93.1	82.9	73.9	62.7	55.0	38.7	24.5	9.9	3.8	2.5	2.1	1.7
TP15-15	66	1.5-3.2	100.0	100.0	100.0	94.1	89.4	85.9	83.0	81.6	78.5	74.0	65.8	43.3	11.0	1.8	0.7
TP15-16	65	.4-1.2	100.0	100.0	94.5	91.3	88.5	84.2	82.0	78.8	67.5	49.9	30.4	13.9	5.4	3.5	2.6
TP15-19	64	.8-3.8	100.0	100.0	83.4	80.3	68.1	56.6	47.2	41.4	28.5	18.3	10.3	5.1	2.8	2.1	1.7

PROJEC	T REPORT	OF										
SIEVE A	NALYSIS SU	J MMARI	IES			PERC	CENT PAS	SING				
Proiect:			Larson Hill			F	Proiect No.:		0			
Sample So	ource:		Larson Hill				Client:		0			
Material:			PIT RUN				Date:		#########			
Sample Information						Pe	ercent Passi	ing				
Test Pit Depth Bag #						Pit Rur	n Sieve Size	s (mm)				
	(m)		75	37.5	19	9.5	4.75	2.36	1.18	0.6	0.3	0.075
98-1	0.3-2.0		100.0	97.6	82.3	67.1	50.1	37.2	19.3	7.5	3.1	1.7
98-2	0.3-6.0		100.0	77.6	45.8	20.8	14.7	12.6	10.8	9.5	8.7	6.9
98-3	0.2-6.0		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
98-4	0.3-5.5		100.0	82.5	58.0	27.1	13.6	8.5	5.6	4.0	3.2	2.4
98-5	0.3-5.5		100.0	87.0	60.4	28.8	14.4	8.3	5.1	3.5	2.9	1.9
98-6	0.3-5.5		100.0	97.3	83.0	64.0	46.4	33.7	18.8	8.5	4.3	2.5
98-7	4.2-5.5		100.0	100.0	99.6	98.6	97.9	96.9	94.1	83.1	54.0	1.7
98-8	0.0-4.5		100.0	92.5	77.1	53.6	32.7	22.5	14.0	7.6	1.9	0.6
98-9	0.2-1.8		100.0	100.0	100.0	100.0	99.8	99.5	98.3	95.9	80.4	21.1
98-10	3.0-5.5		100.0	94.4	74.5	56.8	46.0	36.7	21.4	8.2	2.1	0.8
98-11	2.0-5.0		100.0	92.4	76.6	59.9	51.5	46.8	34.1	18.6	5.5	1.7

Aggregate Gradation Charts

USC Legend

	N A A			
	MA	IERI	als (CLASSIFICATION LEGEND
	MAJ DIVIS	OR IONS	SYMBOL	SOIL TYPE
		LS	GW	WELL GRADED GRAVELS OR GRAVEL-SAND MIXTURES. < 5% FINES
	OILS	SOII	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND
	N N	RAVEL	GM*	SILTY GRAVELS, GRAVEL-SAND-SILT
	INE	GRA	GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY
	GRA	(0)	SW	WELL-GRADED SANDS OR GRAVELLY SANDS,
	SE	AND	SP	POORLY-GRADED SANDS OR GRAVELLY
	OAR	SAND	SM*	SILTY SANDS SAND-SILT MIXTURES
	0	SAS	SC*	CLAYEY SANDS SAND-CLAY MIXTURES
	(0)	ND <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
	SOILS	SILTS AI AYS wL	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
	١ED	CL	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY
	GRAIN	AND >50	MH	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS
	ΝE	LTS / `S wL	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
	LL.	SI	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
	ORG. SO	ANIC ILS	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS
	TOP	SOIL	TS	TOPSOIL WITH ROOTS, ETC.
	COB	BLES	SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm
	LAF BOUL	RGE DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm
	BEDF	ROCK	BR	BEDROCK
	FOR S *GM1; GM2; GM3; GM4;	OILS HA GC1; SI GC2; SI GC3; SI GC4; SI	VING 5 – M1; SC1; M2; SC2; M3; SC3; M4; SC4;	12% PASSING .075 SIEVE, USE DUAL SYMBOL 12 – 20% 20 – 30% 30 – 40% 40 – 50%
•				REV. 90-04-26
				PROVINCE of BRITISH COLUMBIA MINISTRY OF TRANSPORTATION & HIGHWAYS Geotechnical & Materials Engineering
				UNIFIED SOIL CLASSIFICATION LEGEND

Drawn: LU Date: JULY'97 Scale: File No.: ACAD File: ACADSTDS Photos

Looking down from suitability area onto proposed crusher set up site, facing southwest, August 2023.

Looking south at upper suitability area to east of the BC Hydro transmission line, August 2023.

Northwest view of lower suitability area and proposed crusher set up location, August 2023.

Looking southwest at lower floor of pit, with access to Hwy 5, August 2023.

TP 15-06, August 2015.

TP 15-08, August 2015.

Looking southeast onto potential mining area from lower floor, May 2023.

Crusher set up area, lower floor looking northwest, May 2023.