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SUBJECT

LOAD DISTRIBUTION IN SINGLE LANE SHEAR CONNECTED SLAB BRIDGES (REV 1)

As previously discussed in the “Evaluation of CAN/CSA-S6-00 (2000 Canadian Highway bridge
Design Code)”, Section 5 does not include live load distribution factors for single lane multi-
spine bridges. Associated Engineering therefore retained Dr. Baidar Bahkt to derive the required
live load distribution factors. The following summarises the result of the work completed (A
complete copy of the report prepared by Dr. Bakht is attached to this memorandum).

1. CHARACTERISATION PARAMETER

All slab bridges can be characterised by the following parameter:

p- A2

Where: 2b = overall bridge/deck width

L = span
K stiffness parameter defined as
1 021
K=—--—
3 S
Where: t slab thickness
S = slab width
2, | DISTRIBUTION OF LONGITUDINAL MOMENTS

As outlined in CAN/CSA-S6-00 Clause 5.7.1.2 , the longitudinal moment can be calculated as
follows:

Mg =F, x Mgm
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Where: M

Average moment per slab assuming the total moment is shared
equally by all slabs

For shear connected slab bridges, F,, is defined as follows:

__SxN
’"_F+,ufo

Where: : ﬂ - 2—b—f—2?

F and Cf are defined in Table 1

Table 1
Definition of Fand C; for Calculation of Longitudinal Moments

Axle Spacing Load F C,
(mm) Distribution

60:40 3.73-0.26 5 0.75-0.124
1800 ,

50:50 4.10-0.275 0.75-0.124

60:40 3.85-0.276 0.75-0.125
1980

50:50 4.05-0.22( 0.75-0.125

60:40 4.65-0.455 0.9-0.154
2660

50:50 4.18-0.215 0.9-0.154

3. DISTRIBUTION OF LONGITUDINAL SHEAR

As outlined in CAN/CSA-S6-00 Clause 5.7.1.5, the ldngitudinal shear can be calculated as
follows:

V. =F xV.

g v gave

i

Where: |14 Average shear per slab assuming the total moment is shared

equally by all slabs

For shear connected slab bridges, F, is defined as follows:
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Sx N
v =T o~
F+ uxC,
2b- 426
Where: H=—"7%210
124
F and C;are defined in Table 2
Table 2
Definition of F and C, for Calculation of Longitudinal Shears
Axle Spacing Load F C;
(mm) Distribution
60:40 2.76-0.104 0.30-0.045
1800
50:50 3.16-0.105 0.30-0.04,4
60:40 2.90-0.175 0.28-0.044
1980
50:50 3.22-0.105 0.28-0.04(
60:40 2.90-0.114 0.40-0.05(
2660
50:50 3.38-0.114 0.40-0.055
4. TRANSVERSE SHEAR IN WELDED SHEAR CONNECTORS

The following method outlines the calculation of the transverse shear demand (7,

welded shear connector.

V max V(§£k—)
7 1.6

Where: S

V defined in Table 3

shear connector spacing

DAWORK\CHBDC recommendations\submitted design memoranda\load distribution memo rev 1.wpd
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Table 3
Definition of V for the Calculation of Transverse Shear in Welded Shear Connector

Axle Spacing Load ' 4
(mm) Distribution (kN)

60:40 (P/306.8)x(58-4,5)
1800

50:50 (P/306.8)x(54-4,5)

60:40 (P/409.2)x(60-55)
1980

50:50 ~ (Pl409.2)x(58-5)

60:40 (P/613.8)x(68-35)
2660

50:50 (P/613.8)x(64-4.5)
Note:

1. P is defined as the total weight of the tandem axle i.e.
250 kN for CL-625 truck or 0.4W for CL-W truck

5. SKEWED SLABS

Given that skewed geometry tends to magnify longitudinal shear in exterior slabs, and the initial
methodology presented is applicable to right angle bridges only, Dr. Bakht completed a further
study to investigate the effect of bridge skew. A copy of this report has been included with this
Memorandum.

Based on this study, typical shear magnification factors for skew bridges ranged from 1.00-1.05
for skews less than 30° to 1.05-1.08 for skews between 30-45°. If the effect of skew were to be
ignored, this would suggest that shears would be underestimated by a maximum of 8%. Since an
un-safe error of 5% is considered acceptable in bridge design, we feel that the effect of bridge
skew on shear-connected slab bridges could be ignored without resulting in an un-safe shear
design.

6. DESIGN METHODOLOGY FOR SHEAR CONNECTED SLAB BRIDGES

Based on the above the following methodology can be adopted for the design of single lane
welded or grouted shear connected slab bridges if the bridge conforms to the requirements of
CAN/CSA-S6-00 Clauses 5.6.1 and 5.6.2 (see Section 6 of this memorandum):

. Longitudinal moments calculated in accordance with the methodology outlined in
Section 2.

DAWORK\CHBDC recommendations\submitted design memoranda\load distribution memo rev 1.wpd
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. Longitudinal shear calculated in accordance with the methodology outlined in
Section 3 (effect of bridge skew can be ignored).
. Torsional moment can be ignored.
. Shear connectors be spaced between 1.6 and 2.1 m
. Incorporate MoF standard shear connector designs based on design vehicle
loading.
. Section design in accordance with relevant clauses in CAN/CSA-S6-00 Section 8

(Concrete Structures) including requirements for minimum transverse
reinforcement where required.

D:AWORK\CHBDC recommendations\submitted design memoranda\load distribution memo rev 1.wpd



SIMPLIFIED ANALY SIS OF SINGLE-LANE
SHEAR-CONNECTED CONCRETE PLANK BRIDGES

by

Baidar Bakht

Prepared for

The British Columbia Ministry of Forestry
Submitted through

Associated Engineering (B.C.) Ltd.
(Attention: Mr. Julien Henley, P.Eng.)

21 Whiteleaf Crescent
Scarborough ON M1V 3G1
bbakht@rogers.com

Phone: (416) 292 4391
Fax: (416) 292 7374

Original report: March2004
Slightly revised: May 2004



TABLE OF CONTENTS
EXECUTIVE SUMMARY, 3
1 INTRODUCTION, 5

2. DEVELOPMMENTAL BACKGROUND, 6
2.1  Characterizing parameter, 6
2.2  Range of characterizing parameter, 8
2.3  Design vehicles, 10
24  Effectiveness of characterizing parameters, 11

3. SIMPLIFIED METHOD FOR LONGITUDINAL MOMENTS, 13
3.1 Detailsof plates and truck placement, 13
3.2  Confirmation of basic assumption, 15
3.3  Cadculation of plank moments through plate analysis, 16
34  Cdculationof F, 18
35 Reallts, 19
3.6  Proposed method for longitudinal moments, 22
3.7 Example, 22

4, SIMPLIFIED METHOD FOR LONGITUDINAL SHEARS, 24
4.1  Locating longitudinal section for maximum longitudinal shear intensity, 24
4.2  Results, 26
4.3  Proposed method for longitudinal moments, 27
4.4 Example, 27

5. SIMPLIFIED METHOD FOR TRANSVERSE SHEARS, 28
51  Developmental analyses, 28
5.2  Proposed method, 31
53 Example 32

6. REFERENCES, 32



EXECUTIVE SUMMARY

All three simplified methods of analysis for shear-connected concrete plank bridges, with a
single lane, require the calculation of a characterizing parameter b, which is obtained from the
following equation.

_ @b @9.3833p
elLee K g

@ b

In the above equation, K depends upon the plank thicknesst and width S, and is obtained from:

k=l o2t
3 S

The three smplified methods are developed for six different design trucks (A1, A2, B1, B2, C1
and C2), some of which are used in the design of forestry bridges in British Columbia. The
design trucks are illustrated in Fig. 7 of the report. The methods are summarised in the following.

Method for longitudinal moments

The proposed method for obtaining longitudinal moments is the same as specified in Clause
5.7.1.3 of the CHBDC (2000), except the following. The value of the amplification factor Fp,
shall be obtained from the following equation.

N
F+nC,

[cf F,=

where values of F and C; are obtained from the expressions given in Table 5 of the report. For
example, F, in meters, for Truck A1 = 3.73 - 0.26 b. mis given by the following equation, in
which the bridge width, 2b, is in metres.

2b- 4.26
m=———

] 1.24

If the value of mis greater than 1.0, it shall be assumed to be 1.0. The above method for Truck
A2 can aso be used for the CHBDC design loads.

Method for longitudinal shears

The proposed method for obtaining longitudinal shears in single-lane shear-connected concrete
plank bridges is the same as specified in Clause 5.7.1.5 of the CHBDC (2000), except the
following.

The value of the amplification factor F, shall be obtained from the following equation.



[e] Fv = i
F+nC,
where values of F and C; are obtained from the expressions given in Table 6, and mis given by

Equation [d]. If the value of mis greater than 1.0, it shall be assumed to be 1.0. The above
method for Truck A2 can aso be used for the CHBDC design loads.

Method for transver se shear

The maximum shear force Vy max in shear keys, spaced at a centre-to-centre distance of Sy in
metres, shall be obtained from the following equation.

&, 0
f V, o =V Gk s
i Y gl.Gz

where the datum value of the transverse shear force for (Sx = 1.6 m), V, is obtained from the
expressions given in Table 8 of the report for the design truck under consideration. In the case of
continuous shear keys, Sy shall be assumed to be 1.0 m, and the value of Vy max thus obtained
shall be for a1.0 m length of the shear key.

Thevalue of V in kN for the CL-W Design Truck of the CHBDC (2000) shall be obtained
from the following equation, in which Wis the total weight of the design truck in kN.

g v =294 4p)



1 INTRODUCTION

A large number of short span bridges on forestry roads in British Columbia are made of precast
concrete planks that are joined together in the field by means of welded or grouted shear keys.
All these bridges are single lane bridges. A typical shear-connected bridge with four concrete
planks joined by welded shear keysis shown in Fig. 1.

.-—--—

Figure 1 A typical shear-connected concrete plank bridge in British Columbia

Neither of welded and grouted shear keys is capable of sustaining substantial bending moments.
Accordingly, bridges under consideration can be idealized as articulated plates, a special case of
orthotropic plates, in which the transverse flexural rigidity Dy is zero. The cross-section of an
idealized articulated plate is shown in Fig. 2.

LK K. K K 7

i i |

-

Figure 2 Cross-section of an articulated plate

Utilizing data from field tests on two shear-connected bridges on forestry roads of BC, Bakht and
Mufti (2001) have shown that these bridges can be idealized as articulated plates but only after



the longitudinal torsional rigidity of the planks is assumed to be about half the actual torsional
rigidity. The reduction in the torsional rigidity is made necessary because the planks are not fully
restrained against rotation at their supports.

The Canadian Highway Bridge Design Code (CHBDC 2000) includes simplified methods of
transverse load distribution analysis for different types of bridges. However, these methods were
developed by assuming that the wheel loads on an axle are distributed equally, whereas wheel
loads on design trucks used for bridges on BC forestry roads are distributed unevenly.

The CHBDC includes a smplified method for multispine bridges without intermediate cross-
frame between the spines, i.e. boxes. Since Dy in multispine bridgesis very small as compared to
their longitudinal flexura rigidity, these bridges can also be idealized as articulated plates. The
CHBDC simplified method for multispine bridges utilizes the characterizing parameter for
articulated plates b, defined later through Equation [1]. Longitudinal moments and shears in
multispine bridges are obtained with the help of CHBDC Tables 5.7.1.3, and 5.7.1.5,
respectively. Arguably, the CHBDC simplified method for multispine bridges could aso be used
for the shear-connected concrete plank bridges. However, the method for multispine bridges does
not cover single lane bridges. The CHBDC, through Clause 5.7.1.8, aso provides a smplified
method for calculating transverse shear in shear-connected beam bridges. The method, however,
is limited to bridge widths 7.5 m and higher. The British Columbia Ministry of Forests wanted to
develop CHBDC-type ssmplified methods for its single-1ane shear-connected bridges, generally
having widths of 5.5 m or less. In particular, the task required the development of the following
simplified methods for the Forestry design trucks.

a. A method to determine maximum live load longitudinal moments in concrete planks by
revising Clause 5.7.1.3 of the CHBDC.

b. A method to determine maximum live load longitudinal shears in concrete planks by
revising Clause 5.7.1.5 of the CHBDC.

c. A method for determining maximum live load transverse shear in shear keys by revising
Clause 5.7.1.8 of the CHBDC.

This report provides details of the development of the simplified methods described above.

2. DEVELOPMMENTAL BACKGROUND
2.1  Characterizing parameter

As noted earlier, an orthotropic plate with negligible transverse flexural rigidity, Dy, is referred to
as an articulated plate (e.g. Spindel 1961; Bakht and Jaeger 1985). The load distributing
properties of a rectangular articulated plate, supported at two opposite edges, depend upon the
characterizing parameter b, which is defined by the following equation.

0.5

b gD, O
[ b =pERE -
el &b, 5




where

2b = width of bridge

L = span of bridge

Dx = longitudinal flexura rigidity of the plate per unit width
Dy = longitudinal torsional rigidity of the plate per unit width

For shear-connected concrete plank bridges, the two rigidities are calculated as follows.

aEt® o

2l  D,=g—=
12 5
[3] D,, = 0.5GK{’
where
E = modulus of elasticity of plank concrete
G = shear modulus of plank concrete
K = torsion coefficient
I t
S
i >

Figure 3 Cross-section of a concrete plank

When the width S of a plank is greater than 1.5 times its thickness t (Fig. 3), an approximate
valueof K is given by the following equation.

[4] K==. 2%

For the exercise at hand, G can be assumed to be equal to E/2.3. Using this relationship between
E and G, Equation [1] can be rewritten as follows.

b 66.38330 "
5 b=p@RERstsso

LA K g




2.2  Range of characterizing parameter

For finding the full range of b for single-lane bridges under consideration, the following
assumptions are made, it being noted that Associated Engineering (B.C.) Ltd. has confirmed
these assumptions to be redlistic.

a. Thespan length L varies from 6 to 14 m.

b. Thewidth 2b varies from 4.26 to 5.50 m (Fig. 4).

c. The number of planks in bridges varies between 4 and 7 thus giving the maximum and
minimum plank widths Sof 0.61 and 1.38 m, respectively (Fig. 4).

d. Thethickness of concrete plank varies between 0.35 and 0.60 m (Fig. 5).

S$=0.61, 0.70, 0.79 m

L

S=1.07,1.22,1.38 m J
|

Bridge widths = 4.26, 4.88, 5.50 m

Figure 4 Widths of shear-connected bridges considered in study

0.6 (=
04

0.2 p=

Plank thickness t, m
|

0.0 _,1“ 1 i 1 1 i L 1 i i

0 6 8 10 12 14
Span, m

Figure 5 Plank thickness plotted against span length



Using the above assumptions, the value of b for the widest bridge with the smallest span was
found to be 3.36, and that for the narrowest bridge with the largest span to be 1.64. Calculated
values of b based on the above assumptions are plotted against the span length in Fig. 5. Asaso
shown in this figure, the upper value of b was increased for the study at hand to cover cases not
covered by the above assumptions.

5.0
Extended range considered in study
4.0~
Range based on assumed parameters
3.0F
o]
2.0
1.0p ]
0.0 A [ 1 1 | i J
0 6 8 10 12 14

Span, m

Figure 6 b plotted against span length

Table1 Parameters of idealized bridges

Designation Span, m Dy, kN-mm? Dy, kN-mm? b
6N 6.0 125,052 24,439 5.04
8N 8.0 283,897 64,242 3.52
10N 10.0 434,224 104,958 2.72
12N 12.0 540,146 150,006 211
14N 14.0 630,000 210,600 1.65
6w 6.0 125,052 40,838 5.04
8w 8.0 283,897 106,583 3.52
10w 10.0 434,224 175,303 2.72
12w 12.0 540,146 250,011 211
14w 14.0 630,000 351,540 1.65
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Two sets of idealized articulated plates were considered: In one set, the plate width, 2b, was
taken as4.26 m, and in the other 5.5 m. Values of Dy for the idealized bridges were calculated by
selecting t from Fig. 5, and by assuming E to be 35,000 MPa. Vaues of Dy, for the various
bridges were back calculated from the assumed values of b, which are listed in Table 1 aong
with the values of Dy and Dyy. In this table, each bridge is assigned a designation, the number
being the span length in metres and the letter indicating whether the bridge is narrow in width
(N) or wide (W).

2.3  Design vehicles

The three design trucks used for the design of forestry bridges in British Columbia are shown in
Fig. 7. As can be seen in this figure, al three trucks have five axles, and each has a dual-axle
tandem, which will mainly govern the design of bridges under consideration. Figure 7 also shows
that the transverse distance between the longitudinal edge of the bridge and the centreline of the
nearer line of wheels of all trucks is 600 mm. Since the widths of al three design trucks are
different from each other, it is necessary to develop the simplified methods for each truck
Separately.

The BC Ministry of Forestry design guidelines require that the weights of wheels on an axle
be assumed to be distributed in the 60:40 ratio. Associated Engineering (B.C.) Ltd., under whose
direction this project is undertaken, required that the smplified methods be also developed for
the 50:50 weight distribution. Thus it can be seen that effectively, the smplified methods are
required to be developed for six different design trucks.

For the dual-axle tandems, the tire contact area at ground was assumed to be rectangular with
dimensions in the longitudina and transverse directions of the bridge being 250 and 600 mm.

53.5 153.4 153.4 153.4 153.4 kN
l l TRUCK A1 (60:40)
1! | TRUCK A2 (50:50)
4.57 7.32 m 0.60 ‘ 1.80 ! m
= S .3 J—pi—F R |
1.22 1.22 m
71.4 204.6 204.6 204.6 204.6 kN

| | TRUCK B1 (60:40)

l \L l 1 l TRUCK B2 (50:50)
45

] 4 EN,

1.68 m

106.8 306.9 306.9 306.9 306.9 kN

TRUCK C1 (60:40)

l l l l | | l l TRUCK C2 (50:50)
L 4.57 I 7.32 [ ITI 0.60 266 m

i = r' - L ""|

1.68 1.68 m

Figure7 Details of design trucks
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24  Effectiveness of characterizing parameters

In order to investigate the effectiveness of b in characterizing the load distribution properties of
different bridges, two bridges with different spans but the same width (4.88 m) were selected. As
shown in Fig. 8, one bridge had a span of 11 m, and the other a span of 8 m. Values of Dy,
caculated by using the plank thickness from Fig. 5, were 498,615 and 283,897 kN-mn¥,
respectively. It was decided to fix the value of b for both the bridges at 2.34. Accordingly, values
of Dyy for the two bridges were calculated to be 176,296 and 190,064 kN-mn¥, respectively. As
shown in Fig. 8, the two bridges were subjected to a dual-axle tandem of Truck A2 (Fig. 7),
placed centrally in the longitudinal direction. The vehicle edge distance (VED) for loadings in
both bridges was 0.60 m.

rl g R R

TRUCK A2 TRUCK A2

S T
o6 me i e D T E B e ©
oe1mi | 4 4 - P+ ok =

B i o i O

0.6 m 1.8 m
i
o : 4.88 m o
0.6 m, 1.8

4.88 m

Figure 8 Two bridgeswithb =2.34

The two bridges of Fig. 8 were analyzed as articulated plates by the computer program PLATO
(Bakht et al. 2002), which is based on the orthotropic plate theory of Cusens and Pama (1975).
The co-ordinate system employed by PLATO is illustrated in Fig. 9, which also shows that
responses due to rectangular patch loads can be calculated either on equally-spaced points on a
transverse reference section or on individual reference points. The longitudinal direction of the
bridge is denoted by x-axis, and the transverse by y-axis.

In each bridge of Fig. 8, longitudinal moment intensities were calculated at a transverse
section containing the two whedl loads. For the 11-m and 8-m span bridges, the average
intensities of longitudinal moment at the respective reference sections were calculated to be
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153.71 and 106.56 KN-mm/mm, respectively. Moment intensities obtained by PLATO at nine
equally- spaced reference points in the two bridges are listed in Table 2.

X

A

Simply supported edge
S SIS IS S SSE SIS SIS LSS

x
Rectangular
/ patch load

- )
= )
all' e Mol Lo i 5
o . i )
n Reference section with 0
equally-spaced points L

+ Reference

point (x, y)

Y

TIT7 77Ty, Ty

Width, 2b

Figure 9 Co-ordinate system used by PLATO

Table2 Longitudinal moment intensities in kN-mm/mm and distribution factors at the
transverse reference section containing an axle (Fig. 8)

y, m 0.00 0.61 1.22 1.83 244 | 305 | 366 | 427 | 4.88

Mx in bridge| 209.6 | 204.0 | 1834 173.6 1670 | 136.1 | 107.1 | 929 | 885
with L=11m

DF in bridge| 1.36 1.33 1.19 1.13 109 | 089 | 0.70 | 0.60 | 0.58
withL=11m

Mx in bridge| 1434 | 139.7 | 126.2 1194 1144 | 940 | 748 | 65.3 | 62.3
with L=8m

DF in bridge| 1.35 1.31 1.26 1.12 1.07 088 | 0.70 | 061 | 0.58
with L=8m

Distribution factor (DF), a nonrdimensional measure of load distribution characteristics of a
bridge, is obtained by dividing the actua longitudina moment intensity with the average
intensity. Thus obtained values of DF for longitudinal moment intensities for the two bridgesare
also listed in Table 2 and are compared in Fig. 10. The observation that the two curves of DF are
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very close to each other confirms that b is very effective in characterizing the transverse load
distribution properties of a bridge.

50% 50%

R

| J+| |

15

Distribution factor for My

0.0

Transverse position

Figure 10 Distribution factors for longitudina moment intensity in two plates having the
same value of b.

3. SIMPLIFIED METHOD FOR LONGITUDINAL MOMENTS
3.1 Detailsof platesand truck placement

Maximum longitudinal moment intensities under a single vehicle are induced in a bridge when
the vehicle is placed as eccentrically as possible. It can be seen in Fig. 1 that in bridges under
consideration, the timber guardrails are attached outside the deck, so that a longitudinal free edge
of the bridge can be regarded as the edge of the design lane. Accordingly, trucks were so placed
that the VED was 0.6 m in each case. The transverse positions of the three design trucks with
respect to the nearer longitudinal free edge of the bridge are shown in Fig. 11.



14

TRUCK A TRUCK B TRUCK C

= l'Er" 55 O l+

0.6m 1.8m IO.Gml 1.98 m I O.Gﬂ 2.66m

Figure 11 Transverse positions of design trucks

Details of the placement of the three design trucks on bridges with a span of 6 m are shown in
Fig. 12. This figure shows the truck placements for obtaining maximum intensities of both
longitudinal moments and shears. Analyses for the latter are discussed in Chapter 4.

W\ ———
1.80m TRUCK A 1.98m TRUCK B A
= + 3 + £
061m § :_4}_ O.%m_____ L8
061m For M 0.84m For M ©
. o + + X _1_ X
» - =
e =
1.22 m } For Vy 1.68 m For Vy
=— 3 ¥ S —S— e
0125m | X_T-
B e _
2.66 m e =
2.66 m_;TRUCK ¢ + = oM
— 8 k
-+ + I 600 mm
0.84 m
T ForMy] ~} 0.84m
+ + -1 ZPFF Simply supported edge
Free edge
For Vy 1.68 m
=, * :1F:
0.6 m L_ X
» .o 4.26 or 5.50 m

Figure 12 Truck placements on bridges with 6 m span

As listed in Table 1, five span lengths were considered for each of the two bridge widths. Plans
of bridges with the other four span lengths are presented in Fig. 13. For each of these bridges, the
dual-axle tandem of each design truck had the same relative position with respect to the mid-
gpan of the bridge as shown in Fig. 12 for the 6- m span bridges.
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R ik Bt —
4.26 or 5.5 m !

= G

4.26 or 5.5

Wm_r O

12.0 m
140 m

) — 1
f

4.260r5.5 Er
!4. 26 or 5.5 n

Figure 13 Plans of bridges with spans of 8, 10, 12 and 14 m

3.2  Confirmation of basic assumption

The fundamental premise of a simplified method of bridge analysis is that for a given transverse
spacing between lines of wheels of trucks, the transverse distribution pattern of longitudinal
resporses (being longitudinal moments and shears) are independent of the spacing of axles and
location of the transverse reference section. It is because of this premise that it was decided to
develop the simplified methods by using only a dual-axle tandem of each design truck.

The premise noted above is verified in the following by analyzing a 14-m span bridge with a
width of 4.26 m. As shown in Fig. 14, the bridge was analyzed under two load cases of Truck
A2: (a) one load case being the same as used in the developmental analyses, i.e. with a two-axle
tandem, and (b) in the other load case, both the two-axle tandems are positioned on the bridge to
maximize the longitudinal moments. Reference sections for the two load cases are identified in
Fig. 14. The average longitudinal moment intensities at these two reference sections are 230.1
and 231.0 KN-mm/mm, respectively.

As discussed later, for developmental analyses, the longitudinal moment intensities at the
selected reference section were determined at three discrete points: at y = 0.0, 0.3 and 0.6 m. For
the two load cases illustrated in Fig. 14, the moment intensities were obtained by PLATO at the
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same three reference points. Table 3 lists the moment intensities at these three reference points,
along with the corresponding DF's. The fact the DF s for the two load cases are the same up to
the second decimal place confirms the validity of the fundamental premise behind the simplified

methods.
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Figure 14 Two load cases for a bridge with a span of 14 m

Table 3 Longitudina moment intensities and distribution factors for the two load cases
shownin Fig. 14

y, m 0.0 0.3 0.6

Load case (a): My a x = 6.39 m in KN-mm/mm 272.4 271.1 267.0

Load case (a): DF at X =6.39m 1.18 1.18 1.16

Load case (b): My at x = 8.83 m in KN-mm/mm 273.8 2724 268.4

Load case (b): DF at x =8.83 m 1.18 1.18 1.16

It can be appreciated that since the transverse distance between the two lines of whedls of Truck
A2 (whedl load distribution 50:50) is the same as that for the CHBDC Design Trucks, being
1.80 m, the smplified methods developed for the former can also be used in conjunction with the

CHBDC truck loads.

3.3  Calculation of plank moments through plate analysis

Calculation of moments in a girder or a concrete plank, Mg, from orthotropic plate analysis
requires some explanation for the uninitiated. Consider the distribution of longitudina moment
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intensity, My, a a given transverse section in an articulated plate subjected to a single
eccentrically-placed vehicle. As shown in Fig. 15, My is likely to have its peak value, designated
as Mymax, @ the nearer longitudinal free edge of the plate. As the reference point moves away
from the longitudinal free edge, Mx would drop either gradually or rapidly. In any case, the total
moment sustained by the most-heavily-loaded plank will be equal to area under the My-curve
shown hatched in Fig. 15.

From articulated plate analysis, the plank moment can be calculated in the following three
ways, listed in descending order of accuracy.

(&) Calculate the total area under the My-curve over a width S by using a numerical
integration technique, such as the Simpson’s rule.

(b) Assume that the distribution of My is linear over the plank width S obtain the average
value of moment intensity over Sand multiply it with Sto obtain the plank moment.

(b) Calculate Mg by simply multiplying Mymax With S

Shaded area = maximum plank moment

Longitudinal moment intensity, My

Transverse position
Figure 15 Longitudinal moment in a plank from orthotropic plate analysis
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Unless the transverse distribution of My is very peaky in the vicinity of Mymax, the margins of
errors resulting from methods (b) and (c) are expected to be quite small. It was decided to use
method (b) for obtaining the maximum plank moments. Since the smallest practical value of S is
0.61 m, it was further decided to obtain the plank moment over an outer width of 0.6 m, by
taking the average of My at y = 0.0, 0.3 and 0.6 m. Thus, the maximum plank moment My in
kN-mm is obtained from the following equation in which My values are in kKN-mm/mm.

éM X)y:0.0m + (M X)y:0.3m + (M X)y:0.6m 9

[6] M, =600 T
9 3 g

If alarger value of Swere considered for moment integration, the value of My would have been
smaller, thus leading to a ssimplified method that will not be safe for al situations.

3.4 Calculation of F

According to the CHBDC (2000) simplified method, the plank moment Mg at a given transverse
section is given by the following equation.

[7] Mg = I:mlvI gavg
where Mgay is the average moment per plank obtained by dividing the total truck moment, M, at

the transverse section under consideration by N, the number of planks in the bridge. The
amplification factor F, is obtained from the following equation.

g F=— N £105

" F§+”Cf9
100 &

where
S = centre-to-centre spacing of planks
F = awidth dimension that characterizes load distribution for a bridge

For multispine bridges, F depends upon b. The factor m defines the difference in the actual
bridge width from the width, which was used to develop vaues of F; and C; is a correction factor
in % to account for changes in values of F due to changes in bridge width.

In the current development analyses, F will be determined for the smallest width of bridges
under consideration, being 4.26 m, for which width m= zero. For the smallest bridge width,
Equation [7] is rewritten as follows.

N
O Fo=re

or
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1o F=XN
Fm

From Equation [7], Fr is given by:

[11] F = M,
mTM

gavg

For a given idealized bridge and loading case, the value of My is found from results of articulated
plate analysis by using Equation [6]. Equation [11] is used to find Fy,, and then Equation [10] to
caculate F.

Each of the 10 idealized bridges, described in Table 1, was analysed under six design trucks
(Fig. 7) placed according to the scheme illustrated in Fig. 11. Longitudina moment intensities
were obtained at the critical transverse section at the three reference points identified earlier.
Vauesof My at these three reference points were entered on a spreadsheet to calculate values of
F according to the method described above. The spreadsheet output is included in Appendix A.

3.5 Results

The numerical accuracy of the analyses was confirmed by plotting the values of F against b.
When the results of some analyses did not conform to the general trend, the analysis was done
again to correct data errors until all results conformed to a uniform trend. Figure 16 shows the F-
b plots corresponding to Trucks A2, B2 and C2 (50:50 wheel load distribution) on all bridges. It
can be seen that al trends conform to uniform patterns.

50~

2b = 5.50 M3~
4.0 - ~

3.0[ =
el
£
0 Truck C2 /_,:'ff
2.0 Truck B2+ /
Truck A
10|
0.0 | : ; {
0 1 2 3 4 5
b

Figure 16 F-b plots corresponding to Trucks A2, B2 and C2 (Fig. 7)
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A comparison of the F-b curves for 50:50 and 60:40 distribution of wheel loads is provided in
Fig. 17 (a) for bridges with a width of 550 m, and in Fig. 17 (b) for bridges with a width of
4.26 m. As expected, the values of F for the former distribution are larger, leading to smaller
values of the amplification factor Fy,.

Bridge width =5.50 m Bridge width = 4.26 m
4, - |
£ 3.0 P T - .
w | i
2.0 7 " e SR
0.0 i I i i ‘l ;
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c 3.0L =T I s
LL.. ‘‘‘‘‘‘ ""-..“_
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o_o.r 1 i i L 1 | I L L
4.0
3.0| hitn - i
e L N L ey iy
w N . . H hh"!'--
2.0 | = 50:50 wheel distribution —— == 60:40 wheel distributiony
00| i [ 1 k % ti i | i i j
0 1 2 3 4 5 0 1 2 3 4 5
b b
@ (b)

Figure 17 Values of F plotted against b : (&) wide bridges; (b) narrow bridges

A comparison of values of F for wide and narrow bridges plotted in Figs. 17 (a) and (b) will

show that for the same value of b, F is larger for the wider bridge. The difference between values
of F for wide and narrow bridges is accounted for by C;. It is noted that in CHBDC, C; is given
as a percentage, whereas in this report, Cs is defined to have the units of length. Vaues of F and
C; corresponding to Truck A2 (Fig. 7) are plotted in Fig. 18 against b. Since both the F-b and Cs-
b curves are not straight lines, they can be easily represented by a polynomial. In the interest of

simplicity, however, it was decided to represent them by simple equations, which represent a
straight line. As aso shown in Fig. 18, anchoring the straight linesat b = 2.0 and 4.0 ensures that
within the practical zone of b (between 1.5 and 3.5), the error involved in representing the actual

curves by straight linesis very small. For example, the F-b curve of Fig. 18 is represented by the
following equation.
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[12) F =4.10- 0.27b

The differences between the actual values of F and those given by Equation [12] are noted in
Table 4, in which it can be seen that the percentage error is quite small, especially when b lies
between 2.0 and 4.0.

50
F=4.10-0.21b
40~
3.0F
IS
0
2.0 - —4 1.0
Ci=0.9 -0.15b -
= S
— -..__.
0.0 1 ! 1 1 0.0
0 1 2 3 4 5

Figure 18 F and C; corresponding to Truck A2 plotted against b

Table4 Comparison of vaues of F obtained by articulated plate analysis and
Equation[12] for Truck A2
b Actual F, m F, m by Equation [12] | Percentage difference between
values of F

1.65 3.63 3.65 0.6
2.11 3.47 3.53 1.7
2.72 3.29 3.36 2.1
3.52 3.12 3.15 1.0
5.04 2.93 2.73 6.8
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3.6  Proposed method for longitudinal moments

The proposed method for obtaining longitudinal moments in single-lane shear-connected
concrete plank bridges is the same as specified in Clause 5.7.1.3 of the CHBDC (2000), except
the following.

The value of the amplification factor Fp, shall be obtained from the following equation.

13 F=—
F+nC,

where values of F and C; are obtained from the expressions given in Table 5, and mis given by
the following equation, in which the bridge width, 2b, is in metres.

- 4.26
m=———

[ 1.24

If the value of mis greater than 1.0, it shall be assumed to be 1.0.

Table5 Expressions for F and C; for longitudinal moments in single-lane shear-connected
concrete plank bridges

Design Wheel load | F, m Cr, m

truck distribution

Al 60:40 3.73-0.26b 0.75-0.12b

A2 50:50 4.10-0.27b 0.75-0.12b

Bl 60:40 3.85-0.27b 0.75-0.12b

B2 50:50 4.05-0.22b 0.75-0.12b

C1 60:40 4.65-0.45hb 0.90- 0.15b

C2 50:50 4.18-0.21b 0.90- 0.15b

Since the transverse wheel spread and the distribution of wheel loads of the axles of Truck A2
(see Fig. 7) are the same as those of the CHBDC CL-W Truck, the above method for Truck A2
can also be used for the CHBDC design loads.

3.7 Example
The use of the proposed method is illustrated with the help an actual bridge described by Bakht

et a. (2001). The Harris Creek Bridge has a width and span of 5.84 and 10.63 m, respectively.
Asshown in Fig. 19, it has seven planks, each 819 mm wide.



23

819 mm T
5.84m

Figure 19 Cross-section of Harris Creek Bridge

-

|l | D

It is required to calculate the maximum longitudinal moment in a plank due to both Trucks A1
and A2. From Equation [4]:

(1. 020520

From Equation [5]:

b =p2D84 9.38330" _, 5
€116 020 g

Equation [14] gives m= 1.27. Since thisvalueis larger than 1.0, mistaken as 1.0. For Truck A1,
valuesof F and Cs are calculated from expressions given in Table 5.

F=373-026" 239=3.11m
C,; =0.75- 0.12" 2.39=0.46m

For Truck A2, the corresponding values of F and C; are found to be 3.45 and 0.46 m. Equation

[13] gives Fr, = 1.61 for Truck A1, and 1.47 for Truck A2.
The longitudinal position, shown in Fig. 19, is the same for Al and A2 trucks. It is readily

found that the total moment, M;, under the second axle from the left hand side is 723.0 kN-m.
Dividing this moment by N, the number of planks (= 7), one gets Mg avg = 103.3 kN-m.

1534 153.4 kN

- Ll 5
: 4.40 m |1.22 LT__ J

10.63 m

Figure 19 Longitudinal position of Trucks Al and A2 on the span of Harris Creek Bridge

Multiplying Mg avg With the relevant values of Fn,, one gets the girder moment Mg for Truck Al =
166.3 kN-m, and for Truck A2 151.9 KN-m.
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4. SIMPLIFIED METHOD FOR LONGITUDINAL SHEAR
4.1  Locating longitudinal section for maximum longitudinal shear intensity

The longitudinal moment intensity is denoted as V. It is expected that the maximum value of Vy
should be at the edge of a patch load. However, because of difficulties in the convergence of

results, the orthotropic theory used in the computer program PLATO gives the maximum

intensity some distance away from the patch load. To illustrate this point, results of analysis of a
plate with span and widths of 6.0 and 4.26 m, respectively, are presented in Fig. 20.
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Longitudinal shear, Vy, kN/m

X =800 mm

Transverse position

Figure 20. Longitudinal shear intensity at two transverse sections
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As shown in Fig. 20, the two-axle tandem of Truck A2 is placed in such away that the centre of
one axle is 1.0 m away from the nearer simply supported edge. Vx due to this loading is
investigated at different transverse sections, a distance x from the nearer supported edge of the
plate. Since the total longitudina shear at any transverse section between the load and the
supported edge should be the same, the total area under the Vy curve at any transverse section
within this region should also be the same. It can be seen in Fig. 20 that the total areas under the
Vy curves at x = 600 and 800 mm are not the same, thus indicating the need for determining the
optimum location of the transverse section. The Vy curves of Fig. 20 also show that similar to My,
the peak value of Vy lies at the nearer longitudinal free edge of the plate.
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Figure21 Longitudinal shear intensity for the articulated plate and loads shown in Fig. 20

PLATO was used to find Vy a y = 0.0 and different values of x. The outcome of this exercise is
presented in Fig. 21, in which it can be seen that for the load case under consideration, the peak
value of Vy liesa y = 675 mm. It is emphasized that the vertical scale of Fig. 21 is highly
exaggerated, because of which even small differences in the magnitudes of Vy appear large. The
total shear for the loads shown in Fig. 20, between the supported edge of the plate and the loads,
is 224.47 kKN. At y = 675 mm, the total area under the Vy curve for 55 harmonics, obtained by
numerical integration using the Simpson’s rule, was found to be 224.47 kN, only 0.3% larger
than the theoretical value. It was thus confirmed that the PLATO results for longitudina shear
converge aimost fully at the optimum transverse reference section.

Through subsequent analyses, it was found that the transverse section at X = 675 mm was aso
the optimum reference section for al other articulated plates considered in the developmental
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studies. Accordingly, in all analyses relating to the development of the method for longitudinal
shear, the loads were placed as shown in Fig. 20, and Vx was investigated at y = 675 mm.

4.2 Results
The procedure for determining of F and C; for longitudinal moments is described in Chapter 3.

The vaues of F and C; for longitudinal shear, determined by using the same procedure, are
plotted in Fig. 22 against b. Appendix B contains the results of these analyses.

3.5
F for Truck C Wheel load
F for Truck B Distribution
3.0 F for Truck A
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F for Truck B
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| 60:40
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C; for Truck B
C; for Truck A
0.2 10 L
Both
IS 50:50
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60:40
0.1 0.5
0.0 0.0 L | | |
0 1 2 3 4 5

Figure 22 Values of F and C; for longitudinal shear plotted against b
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4.3  Proposed method for longitudinal moments

The proposed method for obtaining longitudina shears in single-lane shear-connected concrete
plank bridges is the same as specified in Clause 5.7.1.5 of the CHBDC (2000), except the
following.

The value of the amplification factor F, shall be obtained from the following equation.

[]_5] FV :i
F +nC,

where values of F and C; are obtained from the expressions given in Table 6, and mis given by
the following equation, in which the bridge width, 2b, is in metres.

- 4.26
m=———

[ 1.24

If the value of mis greater than 1.0, it shall be assumed to be 1.0.

Table 6 Expressions for F and C; for longitudina shears in single-lane shear-connected
concrete plank bridges

Design Whee load | F, m Cr, m

truck distribution

Al 60:40 2.76-0.10b 0.30-0.04b

A2 50:50 3.16- 0.10b 0.30- 0.04b

Bl 60:40 290-0.17b 0.28-0.04b

B2 50:50 3.22-0.10b 0.28-0.04b

C1 60:40 290-0.11b 0.40- 0.05b

C2 50:50 3.38-0.11b 0.40- 0.05b

Since the transverse wheel spread and the distribution of wheel loads of the axles of Truck A2
(see Fig. 7) are the same as those of the CHBDC CL-W Truck, the above method for Truck A2
can also be used for the CHBDC design loads.

4.4 Example

The Harris Creek Bridge, analyzed for longitudinal moments in Section 3.6 is investigated for
longitudinal shear for Truck Al for the load position shown in Fig. 23. The value of b for this
bridge was found to be 2.39, and the value of mwas taken as1.0.

From the expressions given in Table 6 for Truck Al:

F=276-0.10x2.39 = 2.52
Cs =0.30-0.04x2.39=0.20
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For the above values of F and C;, Equation [15] gives F, = 2.01. As expected F, islarger than
Fm, for which the corresponding value wes found to be 1.61. It is recalled that in a given bridge,
the distribution pattern for longitudinal shear is peakier than that for longitudinal moments (e.g.
Bakht and Jaeger 1985).

153.5 153.4 kN

1

0125 || |1.22 m
== 10.63 m

Figure 23 Longitudinal position of Truck A1 on the span of the Harris Creek Bridge

For the load position shown in Fig. 23, the maximum shear, V;, is found to be 285.6 kN. Dividing
this value by 7, the number of planks in the bridge, one obtains Vg ayg = 40.8 KN/ plank. The
maximum longitudinal shear in a plank of the Harris Creek Bridge, Vg, obtained by multiplying
40.8 with 2.01, = 82.0 kN.

5. SIMPLIFIED METHOD FOR TRANSVERSE SHEARS
51 Developmental analyses

Bakht et al. (2001) have developed a simplified method of analysing articulated plates for
transverse shear forces in shear keys due to design loads, in which the centre-to-centre distance
between the two lines of wheels was assumed to be 1.2 m. A new smplified method has now
been developed for the six design trucks of Fig. 7.

Bakht et al. (2001) had developed their simplified method for only wide single-lane bridges
(with awidth of 5.5 m) on the ground that the values of transverse shears thus determined are on
the safe-side for narrower bridges. The same approach was utilised for the current exercise. It
was found that the maximum intensity of transverse shear is induced when the vehicle is placed
as close to a longitudinal free edge of the bridge, and the transverse shear intensity is
investigated between the other longitudinal edge of the bridge and the closer line of wheels.

Similarly to longitudinal shear intensity, the orthotropic plate method of PLATO does not give
the maximum intensity of transverse shear, Vy, at the edge of a rectangular patch load; Bakht et
a. (2001) have aso made the same observation. By conducting the kind of exercise reflected in
the plot of Fig. 21, locations of critical longitudinal sections for were determined for Vy, for each
design truck. As expected, the location of the critical section depended upon the distance
between the lines of wheels, and not upon the proportions of wheel load distribution. The
locations of the critical longitudinal sections for the three types of trucks are trucks are shown in
Fig. 23 dong with the corresponding transverse positions of the trucks.

In the case of design trucks with unequal sharing of wheel loads, the heavier |oads were placed
near the critical section (Fig. 23).

Similar to Bakht et al. (2000), the smallest practical value of the spacing of shear keys, Sk,
was assumed to be 1.6 m in the developmental analyses. It is recalled that the use of the smallest
value of Sy leads to a safe smplified method for larger spacings of shear keys. For each
articulated plate with awidth of 5.5 m, the design trucks were placed centrally in the longitudinal
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direction, and transversely as shown in Fig. 23. The maximum value of shear in a shear key of
each idealized bridge was calculated from PLATO results by integrating Vy over a length of
1.6 m, at intervals of 0.2 m. The Simpson’s rule was used for the numerical integration.

63.4 92.0 kN Wheel loads (TYP)
w!r l Truck Al
76.6 76.6 kN
Truck A2

LO;60,._ 1.80 0.60.| m

81.8 122.8 kN
Truck B1
102.3 102.3 kN
Truck B2
| H |
0.60 1.98 :0_.6_2,_| m Critical section (TYP)
122.8 184.1 kN
Truck C1
153.5 153.5 kN
+ 3 Truck C2
T

| . i

0.60_ 2.66 0.64_| m J

Figure 24 Transverse truck positions to induce maximum transverse shear

Results of analyses and calculations leading to the maximum values of shear in a shear key are
given in Appendix C in a spreadsheet format. Advantage was taken of the symmetry of loading
in the longitudinal direction of the bridge by integrating the area under the Vy curve over only
half the length under consideration, i.e. over 0.8 m. The numerical accuracy of the input data was
confirmed by plotting the calculated values of the shear force per shear key against b. For trucks
with uneven distribution of whedl loads, these plots are given in Fig. 24 (a), and for trucks with
equa distribution of wheel loadsin Fig. 24 (b).

It can be seen in Figs. 24 (a) and (b) the shear-b plots conform to well-defined patterns. In
addition, for a given value of b, the maximum transverse shear force per shear key is higher for
the heavier truck. Uneven distribution of wheel loads also leads to higher shear forces.

Using the results of analyses given in Appendix C, it would have been a straightforward
matter to develop graphical charts similar to those given in CHBDC Clause 5.7.1.8. However,
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the nearly linear shear-b curves of Figs. 24 (a) and (b) suggested that a user-friendlier format can
be adopted for the exercise at hand. Similar to the methods for longitudina moments and shears,
given in Chapters 3 and 4 respectively, the proposed method for transverse shears is based on the
vaueof b.
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Figure 25 Transverse shear in shear keys at a spacing of 1.6 m: (a) due to trucks with
60:40 wheel load distribution; (b) due to trucks with 50:50 wheel load distribution

Values of transverse shear per shear key, V, obtained by orthotropic plate analyses are compared
in Table 7 with those obtained by the proposed method. As shown in this table, within the
practical range b (from 1.65 to 3.52) the values of V given by the proposed simplified method are
within 3% of the values obtained by rigorous analysis. Even outside the practical range of b, the
difference between the two sets of values is within 6%, thus confirming the accuracy of the
proposed method.



31

Table7 Comparison of transverse shear per shear key obtained by rigorous and simplified
methods for shear key spacing of 1.6 m

Design | Method of analysis/ V in kN per shear key for b =

Truck | Differencein values 1.65 211 2.72 3.52 5.04

Al Orthotropic plate 39.2 44.3 47.0 50.0 53.0
V =58-4b 37.8 43.9 47.1 49.6 51.4
Difference 3.6% 0.9% 0.2% 0.8% 3.0%

A2 Orthotropic plate 34.5 39.8 42.7 45.6 48.6
V=54-4b 37.8 43.9 47.1 49.6 514
Difference in percentage 3.6% 0.9% 0.2% 0.8% 3.0%

Bl Orthotropic plate 39.5 45.0 47.8 50.3 52.7
V=60-4b 39.8 45.9 49.1 51.6 534
Difference in percentage 0.8% 2.0% 2.7% 2.6% 1.3%

B2 Orthotropic plate 34.9 40.9 44.1 46.9 49.5
V =58 -5b 32.8 40.4 444 47.5 49.8
Difference in percentage 6.0% 1.2% 0.7% 1.3% 0.6%

C1 Orthotropic plate 52.5 56.9 59.0
V=68-3b 52.9 57.4 59.8
Difference in percentage 0.8% 0.9% 1.4%

C2 Orthotropic plate 45.3 50.5 53.2 55.6 58.0
V=64-4b 43.8 49.9 53.1 55.6 574
Difference in percentage 3.3% 1.2% 0.2% 0.0% 1.0%

52  Proposed method

The maximum shear force Vy max in shear keys, spaced at a centre-to-centre distance of Sy in
metres, shall be obtained from the following equation.

x5, 0
15] Vo =V 22
[15] Y 31.6;21

where the datum vaue of the transverse shear force V for Sy = 1.6 m, is obtained from the
expressions given in Table 8 for the design truck under consideration. The value of b, used these
expressions shall be obtained from Equation [5]. In the case of continuous shear keys, Sk shall be
assumed to be 1.0 m, and the value of Vy max thus obtained shall be for a1.0 m length of the shear
key.

Thevalue of V in kN for the CL-W Design Truck of the CHBDC (2000) shall be obtained
from the following equation, in which Wis the total weight of the design truck in kN.

16] Vv =&
[16] ¢
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Table 8 Expressions for V, transverse shear in single-lane shear-connected concrete plank
bridges with a shear key spacing of 1.6 m

Design Whee load | V,kN/
truck distribution | shear key
Al 60:40 58—-4Db
A2 50:50 54—4Db
Bl 60:40 60—-5Db
B2 50:50 58-5Db
C1l 60:40 68—3Db
C2 50:50 64-4b

When the total weight of the two closely-spaced axles of a truck are different from those of the
CL-W Truck or those given in Fig. 7, expressions given in Table 8 can be used for trucks with
different spacings between centres of their lines of wheels. It is noted that in this table, 4P refers
to the total weight on the two closely-spaced axles.

Table9 Alternative expressions for V, transverse shear in single-lane shear-connected
concrete plank bridges with a shear key spacing of 1.6 m

Spacing between lines | Wheel load | V, kN /

of wheels, mm distribution | shear key

Al 60:40 (4P/306.8)%(58 — 4 b)
A2 50:50 (4P/306.8)x(54 —4 b)
Bl 60:40 (4P/409.2)x(60 — 5 b)
B2 50:50 (4P/409.2)x(58 — 5 b)
C1 60:40 (4P/613.8)x(68 — 3 b)
C2 50:50 (4P/613.8)x(64- 4b )
53 Example

The Harris Creek Bridge, described in Section 3.7, is analysed for transverse shear under
Truck Al (see Fig. 7); this bridge has welded shear keys with a centre-to-centre distance of
2.03m. Thevaueof b =2.38.

From Table 8, V =58 - 4x2.38 = 485 kN. From Equation [15], the maximum transverse
shear, Vy max, in a shear key of the Harris Creek Bridge = 2.03x48.5/1.6 = 61.5 kN.
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EXECUTIVE SUMMARY

The proposed ssmplified method for skew bridges involves the following two steps.

@

(b)

By assuming that the bridge is right with a span equal to the skew span of the original
skew bridge, obtain the maximum longitudinal shear per plank by the smplified method
proposed by Bakht (2004) for right bridges.

Calculate the magnifier C, from the following equation.

C, =1+
8000

where the span length L is in metres and skew angle y is in degees. Multiply the
longitudinal shear per plank obtained in (&) with C,. The shear thus obtained will be the
longitudinal shear per plank in the skew bridge.



1 INTRODUCTION

A simplified method has been presented by Bakht (2004) to determine longitudinal moments and
shears due to a variety of design live loads in single-span shear-connected concrete plank bridges
with zero angle of skew (i.e. in right bridges).

The British Columbia Ministry of Forests wanted the above simplified method to be extended
to skew bridges through the use of the kind of multipliers that are specified in the Clause CA5.1
(b)(i) of the Commentary to the CHBDC (2001). It is recalled that the CHBDC multipliers are
applicable to only slab-on-girder bridges.

This report provides the details of the simplified method for skew shear-connected bridges
with one lane, and subjected to a design truck, in which the centres of the two lines of wheels are
1.8 m apart and the loads between the two lines of wheels are divided 50:50; this truck is
identified as Truck A2 by Bakht (2004).

2. BACKGROUND TO CHBDC METHOD

The CHBDC method, referred to above, provides values of the skew multipliers based on two
dimensionless parameters, e and h, which are defined as follows; these parameters, relating to
the idealisation of the bridge as an orthotropic plate, were derived by Jaeger et al. (1988), and are
described by Jaeger and Bakht (1989).

_ Stany
L

[1]

2]  h=0. 5§_Q,asg

where S is the girder spacing, y is the angle of skew, L is the span length, Dy is the transverse
flexural rigidity per unit length, and Dy is the longitudinal flexura rigidity per unit width.

As discussed by Bakht (2004), the shear-connected bridges under consideration are analyzed
as articulated plates, a special case of the orthotropic plate in which Dy is equal to zero. From
Equation [2], it can be seen that for articulated plates, in which Dy =0, h is adways zero. It is
concluded that the longitudinal shear islikely to depend only on the angle of skew.

Bakht (1988) has shown that when skew bridges are analysed as right bridges by assuming
that the equivalent span of the right bridge (Fig. 1 b) is the same as the skew span of the skew
bridge (Fig. 1a), the analysis aways gives conservative (i.e. safe) results for longitudinal
moments. The longitudinal shears obtained by the simplified method, however, are smaller than
the same response in the skew bridge. It is for this reason that the CHBDC (2001) multipliers,
which are always greater than 1.0, are applied to only longitudina shears. It can be seen from
Fig. 1 (a) that the skew span is always greater than the right span.
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Figure 1

3. ANALYSISOF SKEW BRIDGE ASRIGHT

@

2b

(b)

Analysing skew bridge as right: (a) skew bridge; (b) equivalent right bridge

Bakht (1988) has shown that the effect of vehicles with an orthogonal pattern of wheel loads of a
truck on a skew bridge (Fig. 2 a) can be analysed redlistically by analysing the skew bridge as
right in which the orthogona pattern of wheel loads is made skew so that longitudinal positions
of the loads on the equivalent right bridge with respect to the transverse reference sectionare the
same as those on the original skew bridge (Fig. 2 b).

Table1 Parameters of idealized bridges
Designation Dy, KN-mm?* Dy, kN-mm?® b
Span, m

6N 6.0 125,052 24,439 5.04
8N 8.0 283,897 64,242 3.52
10N 10.0 434,224 104,958 2.72
12N 12.0 540,146 150,006 2.11
14N 14.0 630,000 210,600 1.65
6W 6.0 125,052 40,838 5.04
8w 8.0 283,897 106,583 3.52
10W 10.0 434,224 175,303 2.72
12w 12.0 540,146 250,011 211
14W 14.0 630,000 351,540 1.65

In the previous study (Bakht 2004), it was shown that the maximum intensities in bridges
under consideration are induced in the outer-most plank, when the design truck is placed as
eccentrically as possible. Accordingly, it was decided to use the same governing longitudinal and




transverse load position of the dual-axle tandem of the A2 Truck with respect to the closer
longitudinal and transverse free edges of the articulated plate; this position is shown in Fig. 2 (a)
for the skew bridges, and in Fig. 2 (b) for the equivalent right bridges. As shown in the latter
figure, the longitudinal shears were investigated at transverse section that is 765 mm from the
closer supported edge. Similar to the previous study, the span length L was varied from 6 to
14m, but in steps of 4.0 m. Two bridge widths were considered: 4.26 and 5.50 m. The
orthotropic plate properties for the 10 idealised bridges were the same as used in the previous
study. These properties are listed in Table 1 for easy reference.
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Figure 2 Analysing a skew bridge as right: (a) original skew bridge with orthogonal load
pattern; (b) equivalent right bridge with skew load pattern

Each whedl load, represented by a+ signin Figs. 2 (a) and (b) represents a rectangular patch load
measuring 300 mm in the longitudinal direction and 600 mm in the transverse direction.

Four skew angles were considered in the analyses. As shown in Fig. 3, these skew angles
were 0°, 15°, 30° and 45°. Thus for each of the idealised bridges listed in Table 1, four load cases
were considered corresponding to each of these skew angles. Since the orthotropic plate program
PLATO (Bakht et al., 2002) can handle only similar longitudina lines of wheels, each load case
involved two sets of analyses, one for each line of loads. The results for dissmilar lines of loads
(Fig. 2 b) were obtained by summing the results due to the separate lines of wheels.

It isnoted that L in Fig. 3 was 6, 10 and 14 m, and two values of width 2b were considered,
these being 4.26 m and 5.50 m.
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4, DETAILSOF ANALYSES

Numerical results of anayses described above are presented in spreadsheet format in
Appendix A. For each idealised bridge, the absolute values of longitudinal shear intensity is
calculated, in kN/m, for skew angle = 0°, 15°, 30° and 45°, respectively. Following the notation
of CHBDC Commentary, the magnifier for longitudinal shear is denoted herein as C,. The value
of C, for a bridge with given angle of skew is obtained by dividing the maximum longitudinal
shear/plank for the skew bridge with the corresponding value in the right bridge having the same
span length, width and relative position of the design truck. From Appendix A, it can be seen that
the values of C, for nearly all analysed skew bridges are greater than 1.0. The reasons for some
valuesof C, being smaller than 1.0 are discussed in the following.

The variation of C, with respect to the angle of skew can be studied readily when the results
are presented graphically, asin Fig. 4. It can be seen in this figure that C, increases most rapidly
with increase in the skew angle when the span length is the largest, being 14 m. The increase
become less rapid for the smaller span length of 10 m. However, for the smallest span of 6 m, the
magnifier rises initially with increase in the angle of skew, but drops just below 1.0 for higher
angles of skew. A study of the three C,-y angle curvesin Fig. 4 shows a systematic change with
respect to both the span length and skew angle. This observation confirms that no arithmetical
errors were committed in the analyses.
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Figure 4 C, plotted against angle of skew

The values of C, for outer and inner planks in some of analysed the shear-connected bridges
are lised in Table 2 for both narrow (N) and wide (W) bridges, having widths of 4.26 and
5.50 m, respectively. It can be seen in this table that the magnifier always has a larger vaue for
the outer planks, and that small changes in the bridge width have negligible effect on C,.

The results shown in Table 2 clearly show that the effect of bridge width can be neglected in
developing the magnifiers. Further, it is also obvious that similar to the smplified method for
right bridges, the magnifiers need be developed only for the outer planks.



Table2 Values of C, for some cases
Bridge C, for outer planksfor skew angle= C, for inner planksfor skew angle=
° 15° 30° 45° ° 15° 30° 45°
6N 1.000 1.013 1.015 0.998 1.000 1.018 1.018 0.990
6w 1.000 1.017 1.016 0.989 1.000 1.021 1.016 0.973
14N 1.000 1.039 1.065 1.076 1.000 1.047 1.076 1.084
14w 1.000 1.034 1.052 1.052 1.000 - - -

While the trends of three C,-y curves are well defined, it can be seen that the maximum value
of the magnifier is nearly 1.08. An 8% increase in the maximum longitudinal shear intensity is
very small and can be neglected. The 3¢ edition of the Ontario Highway Bridge Design Code
(OHBDC, 1991), the predecessor of the CHBDC (2000), specified that the smplified analysis
for live loads could be applied to a skew slab-on-girder bridge provided that the value of the
skew parameter, defined by Equation [1], is less than 1/18. The commentary to the OHBDC
(1991) states that this limit ensures that the shear values obtained by the simplified method are
not in unsafe error by more than 5%.

Since an unsafe error of up to 5% is considered acceptable by a state-of-the-art bridge design
code, a case can also be made for increasing this limit to 8%. It is noted that, as explained later,
only afew bridges will have an unsafe error of more than 5%.

The curves drawn in Fig. 4 have a relatively small vertical scale, making it difficult to
visualise minute variations. In order to study them microscopically, the curves are redrawn in
Fig. 5 with an exaggerated vertical scale, in which each division represents a0.01 step in C,.

It can be seen from Fig. 5 that C, is larger than 1.05 only for large span bridges having skew
angles greater than about 20°. For all other skew bridges, the degree of unsafe error in analysing
them as right bridges will be 5% or smaller. Notwithstanding this observation, a simplified
method is now developed so that no theoretical error isinvolved in the smplified method.
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5. PROPOSED METHOD

In the interest of keeping the ssimplified method really simple three ssmplifying assumptions are
made regarding the C,- y curves, two of which are illustrated in Fig. 5: () C, varies linearly with
respect to the angle of skew; (b) for L = 6 m, C, does not drop with increase in the skew angle,
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but keeps rising as shown in Fig. 5; and (¢) C, varies linearly with span length. As shown later,
these assumptions lead to miniscule errors. By adopting these assumptions, the curves of Fig. 5
can be represented by the following equation.

@ Co=1e
8000

where the span length L is in metres and skew angle y is in degrees. The application of the
magnifier C, is quite simple: Obtain the maximum intensity of longitudinal shears by the
simplified method proposed by Bakht (2004), and multiply this intensity by C, obtained from
Equation [3].

6. ACCURACY OF PROPOSED METHOD

The values of C, obtained from rigorous analysis (Appendix A) are compared in Table 3with
those obtained from Equation [3].

Table 3 Comparison of vaues of C, obtained from rigorous analysis and Equation [3]

L,m Method C, for skew angle =

15° 30° 450

14.0 Rigorous 1.03 1.07 1.08

Equation [3] 1.03 1.05 1.08

10.0 Rigorous 1.03 1.05 1.05

Equation [3] 1.02 1.04 1.06

6.0 Rigorous 1.02 1.02 1.00

Equation [3] 1.01 1.02 1.03

It can be seen in Table 3 that the differences in values of C, given by rigorous analysis and
obtained by Equation [3] are less than 0.01 in all cases except one, in which the difference is
0.03 on the safe side. It is thus concluded that the proposed method, although based on
simplifying assumptions, isfarly accurate.

7. CONCLUSIONS

A smplified method has been developed for skew shear-connected bridges with one design lane
to correct the design values of longitudinal shear obtained by the simplified method proposed by
Bakht (2004). Similar to the method specified in the Commentary to the CHBDC (2001), the
proposed method utilises a multiplier, always greater than 1.0, that depends upon the span length
and angle of skew (Equation 1). It has been shown that the maximum unsafe error involved in
predicting the design values of longitudinal shear in the bridges under consideration is likely to
be under 8%. If this degree of error is deemed to be acceptable, then the effect of skew angle
need not be considered.
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