Technical Summary

February 2024

Pit Name: Trapping Pit

Provincial Pit Number: 0951

Location: Trapping Pit is approximately 18km north of Beaverdell on Highway 33 (Figure 1). Access to the pit can be made from Highway 33.

Legal Land Description: The site is currently a Section 16 Map Reserve (LF# 4402266) held by the British Columbia Ministry of Transportation and Infrastructure (BC MoTI). The legal description of the Map Reserve is "all that unsurveyed Crown land situated in the vicinity of District Lot 1495S, Similkameen Division of Yale District, containing 14.5 hectares, more or less". The layout of the Map Reserve boundary is shown in the legal plan (Figure 2).

Subsurface Investigation: Subsurface investigations at Trapping Pit were carried out in 2023 and 2010 by Ministry of Transportation & Infrastructure.

In 2023 thirteen (13) test pits were excavated to depths ranging from 3.1 to 5.0m and in 2010, seventeen (17) test pits were excavated to depths ranging from 1.6 to 5.2m. During the test pitting, subsurface soil and groundwater conditions were logged and representative samples of the granular materials were collected for laboratory testing and future reference. Laboratory testing was carried out on fifteen (15) of these samples to assess the gradation and durability characteristics. The tests completed were wet sieve analysis, micro deval, sand equivalent, relative density, and absorption.

Based on the results of the 2023 and 2010 investigations, one (1) granular area was defined (Figure 3). The detailed results of the subsurface testing are provided in the Test Pit Summaries and test pit locations are shown on the Pit Development Plan (Figure 3).

Material Gradation: Table 1 shows the gradation as a percentage by weight of the fines (silts and clays), sand and gravel components as well as the Unified Soil Classification (USC [included after test pit summary]) for the samples tested.

Test Pit	Depth (m)	Fines (%)* <0.075mm	Sand (%)* 0.075- 4.75mm	Gravel (%)* 4.75-75mm	USC			
23-01	2.1-4.4	3.3	47.7	49.0	GP			
23-02	0.6-3.6	3.9	70.0	26.0	GP			
23-03	2.4-4.2	1.9	49.1	49.0	GP			
23-04	2.5-3.1	4.4	59.6	36.0	GP			
23-05	2.5-3.6	4.1	51.9	44.0	GW			
23-06	0.1-4.0	4.6	39.4	56.0	GP			
23-07	1.2-4.1	6.1	44.9	49.0	GW			
23-08	0.0-5.0	3.7	42.3	54.0	GP			
23-09	0.0-4.1	4.1	42.9	53.0	GP			
23-10	0.5-3.9	2.3	33.7	64.0	GP			
23-11	0.3-2.5	3.0	33.0	64.0	GP			
23-12	1.9-3.8	10.3	42.7	47.0	GW-GM			
23-13	2.9-3.8	3.7	3.7 28.3 68.0					
2023 A	verages	4.3	45.0	50.7	-			

Table 1: Pit Run Gradation

Test Pit	Depth (m)	Fines (%)* <0.075mm	Sand (%)* 0.075- 4.75mm	Gravel (%)* 4.75- 75mm	USC
TP10-01	1.2-2.8	3.2	30.4	66.4	GP
TP10-02	0.2-1.6	1.3	44.3	54.6	GP
TP10-03	1.3-4.5	2.6	32.0	65.3	GP
TP10-04	0.1-2.1	2.6	37.1	60.3	GP
TP10-05	0.1-5.0	2.0	31.9	66.1	GW
TP10-06	1.3-4.0	2.5	33.1	64.6	GP
TP10-08	1.1-5.0	4.6	26.4	68.9	GW
TP10-09	1.0-4.6	1.9	34.3	63.8	GP
TP10-10	1.0-2.8	2.8	31.9	65.2	GP
TP10-11	0.2-2.2	1.3	27.7	70.9	GP
TP10-12	3.0-5.0	1.0	38.2	60.9	GP
TP10-13	3.0-5.0	7.8	34.6	57.6	GW-GM
TP10-14	2.0-5.0	1.3	49.7	48.8	SP
TP10-16	0.0-5.0	1.2	28.9	69.8	GP
TP10-17	2.0-4.5	4.2	30.5	65.1	GP
2010 Av	/erages	2.7	34.1	63.2	-

Material Durability: Table 2 shows the results of the durability tests as well as the specifications as required in the Standard Specifications for Highway Construction.

Test Pit	Sand Equivalent	Micro (%	Deval	Absorp	otion	Relat Dens	Relative Density		
	(%)	Coarse	Fine	Coarse	Fine	Coarse	Fine		
2023									
TP23-06	75	-	-	1.9	3.1	2.53	2.46		
TP23-07	-	9.0	14.3	-	-	-	-		
2010									
TP10-04	50	8.9	11.8	-	-	-	-		
TP10-10	-	-	-	1.52	2.04	2.54	2.51		
TP10-12	66	7.5	11.6	1.99	2.18	2.51	2.52		
		BC Mo	oTI Speci	fications					
Sand E	Equivalent	≥40 for ≥20	base coa for surfac	irse and fin ing, sub-ba aggreg	e aspha ase and ates	lt mix aggr bridge end	egate fill		
Micro	o Deval	≤30% ≤259 ≤18% fo ≤20% fo	for sub-b % for surf or Class 1 or Class 2	ase and br acing & bas Pavemen Pavemen	idge end se cours t asphal t asphal	l fill aggreg e aggregat t mix aggre t mix aggre	ates tes gates gates		
Abs	orption	≤1.0% fo	<2.0% fo or coarse a	r coarse pa and ≤1.5% seal	aving ag for fine s	gregates graded ago	gregate		
Relativ	e Density		~2.65 1	for all aggre	egate pr	oducts			

Table 2: Durability Test Results

Material Suitability: Based on the 2023 and 2010 investigation results, the material is judged to be suitable for the following purposes:

Table 3: Suitability

	Pit Run	Crush
Trapping Pit	SGSB	25mm WGB
Suitability Area	BEF	Asphalt Mix Aggregates

The samples tested meet the gradation, sand equivalent, and micro-deval specifications for base course, subbase course, bridge end fill and asphalt mix aggregate. Based on the absorption results the samples meet the specification for paving aggregates.

Sulphate and Chloride Testing

Table 4 shows the sulphate and chloride test results for select samples from the suitability area. These results are provided for information and have not been considered for material suitability.

Table 4: Sulphate and Chloride Test Results

Test Pit	Water-Soluble Sulphate	Water-Soluble Chloride
TP23-05	0.03	0.001

Volume Estimates: Table 5 shows the volume estimates that can be expected for gravel from the proposed suitability area. This is based on the measured depths encountered during the subsurface investigation. The potential volumes of granular material were calculated by averaging the total thickness of granular material encountered in test pits and multiplying by the estimated surface area.

Table 5: Volume Estimates

Suitability Area ~2.0ha.	Granular Material
Average Layer Thickness (m)	4.0
Volume (m ³)	80,000

Pit Development Notes

- All development must be carried out in accordance with the Health, Safety, and reclamation Code for Mines in British Columbia, BC Ministry of Energy, Mines and Low Carbon Innovation (2022, or later edition), the Standard Specifications for Highway Construction, BC Ministry of Transportation and Infrastructure (2020, or later edition) and the Aggregate Operators Best Management Practices Handbook for BC.
- All trees, vegetation, and overburden are to be removed within 2m of the top of the pit faces. Topsoil, overburden, and aggregate cannot be removed within five meters of the reserve boundary.
- The processing area is recommended to be located on the pit floor as identified on the Pit Development Plan (near TP10-07), with mining proceeding from the eastern lower pit face back towards the west (and northwest and south) as indicated.
- Processed aggregate may be stockpiled to the south of the production site (near TP10-07) or near the northern pit face, where space permits as indicated on the Pit Development Plan. Note that existing stockpiles may need to be relocated to make more room.
- Due to a high percentage of oversize rock contained within the deposit the use of a primary crusher is required during aggregate production.
- No dumping of debris or petroleum products will be permitted, and the site must be left in a clean and safe condition.
- At the completion of the pit development operations, but prior to the depletion of the pit, the sides of the pit faces, waste piles, and overburden stockpiles must be trimmed to a 1.5H:1V slope. Active pit faces must be reshaped with native granular materials.

- Upon depletion of the pit, all disturbed areas are to be reclaimed. The minimum reclamation procedure should include re-sloping of the pit faces and waste piles to a 2H:1V slope, contouring the area for appropriate drainage, spreading of overburden followed by topsoil, and seeding.
- Should any of the above conditions conflict with the Health, Safety, and Reclamation Code for Mines in British Columbia, then the Code will prevail.

Closure

The findings of this report and the soil conditions noted above are inferred from the extrapolation of limited surface and subsurface data collected during the site investigation. It should be noted that different and possibly poorer soil conditions may exist between the test pit locations and volume estimates may vary from those reported in this report.

Prepared by:

Reviewed by:

Laura Courtenay Senior Aggregate Resource Specialist Steven Lee Senior Aggregate Resource Specialist

Enclosures

Figures: Figure 1 - Location Plan Figure 2 - Legal Plan Figure 3 – Pit Development Plan Test Pit Summaries Test Pit Logs (2023 & 2010) Wet Sieve Analysis Charts Aggregate Gradation Charts USC Legend Photos Figures

This drawing was originally produced in colour.

This drawing was originally produced in colour.

Test Pit Summaries

	AGGREGATE LOG													
PROJ	ECT:		Tr	apping Pit				s	AMP	LED	BY:		Steven Lee	
P	PIT #:		951						Ν	IETH	IOD:	Excavator		
DISTE	RICT:		SA09 - Ko	ootenay Bo	ounda	ary		_		D	ATE:		11-Oct-23	
TEST PIT	DEPTH		SAMPLE BAG	SOIL S	ESTIMATED GRADATION		ESTIM	ATED RO	DCK 75	mm	SAND TYPE	REMARKS		
NO.	FROM	то	NO.	CLASS	G	s	F	MAX SIZE	75mm - 150mm	150mm - 375mm	>375mm	FMC	Lab Sieve	
TP23-01	0 0.6 2.1	0.6 2.1 4.4	TP23-01	SM1 GP GP	15 60 49	70 38 48	15 2 3.3	900	10	10	10	F-M M-C	Sluffing	
TP23-02	0 0.6	0.6 3.6	TP23-02	OB SP SP	30 26	67 70	3 3.9	700	2	4	4	F-M	Sluffing	
TP23-03	0 0.6 2.4	0.6 2.4 4.2	TP23-03	OB SM1 GP SP	15 60 49	70 38 49	15 2 1.9	1000	10	10	10		TP located at the edge of downhill slope to the east. Sluffing	
TP23-04	0 0.6 2.5	0.6 2.5 3.1	TP23-04	OB SP GP SW	30 50 36	62 46 60	8 4 4.4	800	8	9	10	F-M M-C	Sluffing	
TP23-05	0 0.7 2.5	0.7 2.5 3.6	TP23-05	OB SP SP SP	30 44 44	62 54 52	8 2 4.1	900	6	8	10	F-M M-C	Sluffing	
TP23-06	0 0.1	0.1 4	TP23-06	GP/Floor GP GP	55 56	42 39	3 4.6	1200	6	6	8	M	Sluffing	
TP23-07	0 0.4 1.2	0.4 1.2 4.1	GP/ TP23-07	old crush/ SM2 GP GW-GM	floor 30 55 49	40 47 45	30 2 6.1	1700	4	7	7	F		
TP23-08	0	5	TP23-08	SP GP	44 54	52 42	4 3.7	800	1	1	1	M-C	Clay present @ bottom, see photo.TP located at bottom of floor of main SE face.	

	AGGREGATE LOG													
PROJ	PROJECT: Trapping Pit						<u> </u>	SAMPLED BY:				Steven Lee		
F	PIT #:		951						Ν	IETH	IOD:		Excavator	
DISTE	RICT:		SA09 - Kootenay Boundary							D	ATE:		12-Oct-23	
								-						
TEST PIT	DEPTH		SAMPLE BAG	SOILS	ES GF	STIMAT RADATI	ed On	ESTIM	ATED RO	OCK 75	mm	SAND TYPE	REMARKS	
NO.	FROM	то	NO.	CLASS	G	s	F	MAX SIZE	75mm - 150mm	150mm - 375mm	>375mm	FMC	Lab Sieve	
	0	4.1	TP23-09	GP	58	40	2	1200	5	7	9	M-C	Sluffing	
TP23-09				GP	53	43	4.1							
11 20 00						.	 							
	0	05	G	2/floor/cri	ish								Sluffing	
TD00 40	0.5	3.9	TP23-10	GP	57	40	3	900	6	8	10	M-C	Sidining	
TP23-10				GP	64	34	2.3							
	0		.3 RAP/floor/cr		ush	ush			<u>,</u>	ļ				
TP23-11	0.3	2.5	TP23-11	GP	55	43	2	700	4	4	3	M		
	2.5	4.8		GP	55	40	5					М		
	0	0.2		OB			Ū							
	0.2	0.8		GP	55	42	3					M-C		
	0.8	1.3		CL										
TP23-12	1.3	1.5		SP	30	66	3					М		
	1.5	3.8	TP23-12	GP	56	40	4	500	3	5	5	M-C		
		0.0	11 20 12	GW-GM	47	43	10			Ŭ	Ŭ			
	0	1.3	Crush/v	voody deb	oris/fl	oor								
TP23-13	1.3	2.9		SM	35	57	8							
	2.9	3.8		GP	56	41	3	1100	5	6	7	M		
				GP	00	20	3.1							
		•••••				.								
						†	1		.					
			Ι					[
					<u>.</u>	ļ	ļ		ļ	ļ				
			.		.	 	 	 	 	 				
					 	 	 		 	 				
				· · · · · · · · · · · · · · · · · · ·					
						ļ			ļ					

AGGREGATE LOG

BBO IECT: Highway 22 Bac

PROJECT:	Highway 33 Beaverdell north	SAMPLED BY:	Bill Richards
PIT #:	Trapping Pit	METHOD:	Excavator
DISTRICT:	West Kootenay	DATE:	DEC 22 2010

TH / TP	DEF	PTH	SAMPLE	SOILS	ES GR	TIMAT ADATI	ED ON	ES	STIMAT	ED RO	СК	SAND TYPE	REMARKS
				ULA33					75mm	150m			
	FROM	то	BAG No.		G	S	F	MAX SIZE	- 150m	m - 375m	375m	FМС	Generally this pit has very lrg boulders in the first 2 meters and
									m	m	m		Irg cobbles to at least 5 meters
TP 10-01	0.0	1.2		TS					2	11	20		Very Lrg Boulders
	1.2	2.8	633	GPGM	61	32	7	1000	9	7	6		
	2.8	3.8		SPSM	21	73	6						
	3.8	5.2		SP	47	49	4						
			lab test		66	30	4						
TP 10-02	0.0	0.2		TS									
	0.2	1.6	634	GPGM	52	40	8	1200	9	12	10		Very Lrg Boulders
				GPGM	55	37	8						
			lab test		54	44	2						
TP 10-03	0.0	0.1	CRUS	SH MATE	RIAL	1							
	0.1	1.3		GPGM	65	25	10	900	10	15	15		Very Lrg Boulders
	1.3	4.5	635	GP	67	31	2						
			lab test		65	32	3						
TP 10-04	0.0	0.1	CRU	SH MATE	RIAL								
	0.1	2.1	636	GPGM	66	22	12	1200	10	15	12		Very Lrg Boulders
	2.1	5.0		GP	64	29	2						
			lab test		60	31	3						
TP 10-05	0.0	0.1		TS									
	0.1	5.0	637	GPGM	65	30	5	950	10	16	14		Very Lrg Boulders
			lab test		66	32	2						
TP 10-06	0.0	0.2		TS									
	0.2	1.3		GM1	68	20	12	1200	6	12	16		Very Lrg Boulders
	1.3	4.0	638	GPGM	57	28	5						
			lab test		64	33	3						
TP 10-07	0.0	4.0		OB									This area of the pit was used to
													dispose of asphalt material and
													plastic and other rubbish

AGGREGATE LOG

PROJECT:	Highway 33 Beaverdell north	SAMPLED BY:	Bill Richards
PIT #:	Trapping Pit	METHOD:	Excavator
DISTRICT:	West Kootenay	DATE:	

TH/TP	DEF	PTH	SAMPLE	SOILS	ES	TIMAT	ED	ES	STIMAT	ED RO	CK	SAND	REMARKS
			•	CLASS	GR	ADATI			/5	mm	1	IYPE	
	FROM	то	BAG No.		G	S	F	MAX SIZE	/5mm - 150m	150m m - 375m	375m m	FМС	Generally this pit has very lrg boulders in the first 2 meters and
TD 10 09	0.0	1 1							m	m			ing cobbles to at least 5 meters
TF 10-00	0.0	5.0	620				12	700	12	6	2		
	1.1	5.0	lab test	Givin	60	26	5	700	12	0	2		
					09	20	5						
TP 10-00	0.0	1.0											
TF 10-09	0.0	1.0	640		60		2	1100	8	10	10		Very Lra Boulders
	1.0	4.0	lab test	01	64	3/	2	1100	0	10	10		
					04	54	2						
TP 10-10	0.0	1.0			ΙΔΤΕΙ	RIAI							
	1.0	2.8	705	GM1	65	23	12	750	q	12	6		
	2.8	5.0	100	GPGM	60	34	6	100	Ŭ	12	Ŭ		
	2.0	0.0	lab test		65	32	3						
TP 10-11	0.0	0.2		OB									
	0.2	2.2	706	GPGM	60	32	8	800	9	14	5		
	2.2	5.0		GP	64	32	4		<u> </u>		-		
		0.0	lab test	•.	71	28	2						
TP 10-12	0.0	3.0		GP	58	38	4						
	3.0	5.0	707	GP	50	47	3	900	5	6	3		Verv Lra Boulders
			lab test		61	38	1						
TP 10-13	0.0	3.0		GPGM	62	30	8						
	3.0	5.0	708	GPGM	56	37	7	400	6	4	3		
			lab test		58	35	8						
TP 10-14	0.0	2.0	OB A	ND ASP	HALT								Very Lrg Boulders
	2.0	5.0	709	GP	58	38	4	1100	9	7	6		
			lab test		48	50	2						
TP 10-15	0.0	2.5		GC1	50	38	12						
	2.5	4.0		CL									DEEP CLAY SEAM
TP 10-16	0.0	5.0		GPGM	68	24	8	1200	12	13	12		
			lab test		70	29	1						
TP 10-17	0.0	2.0		GPGM	62	28	10						Very Lrg Boulders
L	2.0	4.5	704	GPGM	60	32	8	1200	7	11	12		Very Lrg Boulders
			lab test		65	31	4						

GEOTECHNICAL AND MATERIALS ENGINEERING MINISTRY OF TRANSPORTATION AND HIGHWAYS PROVINCE OF BRITISH COLUMBIA

PROJECT REPORT OF SIEVE ANALYSIS SUMMARIES

PERCENT PASSING

Project: Sample Source: Material:			Trapping Te Trapping Pi PIT RUN	est Pitting t #0951					F	Project No.: Client: Date:		0 0 2023-10-11					
Sample Information									Pe	ercent Pass	ing						
Test Pit	Depth (m)	Bag #	75	62	50	27.5	25	10	Pit Rur		es (mm)	2.26	1 10	0.6	0.2	0.15	0.075
23.01		0	100.0	100.0	97.0	94.0	75.0	70.0	65.0	9.0	4.75 51.0	2.30	1.10	0.0	0.3	0.15	0.075
23-01	2.1-4.4	0	100.0	100.0	07.0	04.0	75.0	70.0	05.0	01.0	51.0	55.0	10.0	9.0	0.0	4.0	3.3
23-02	0.0-3.0	0	100.0	100.0	100.0	96.0	91.0	88.0	0.08	83.0	74.0	0.00	32.0	14.0	7.0	5.0	3.9
23-03	2.4-4.2	0	100.0	100.0	88.0	82.0	73.0	69.0	63.0	61.0	51.0	34.0	15.0	6.0	4.0	3.0	1.9
23-04	2.5-3.1	0	100.0	100.0	81.0	//.0	75.0	73.0	/1.0	70.0	64.0	48.0	26.0	13.0	8.0	6.0	4.4
23-05	2.5-3.6	0	100.0	100.0	91.0	86.0	79.0	75.0	68.0	65.0	56.0	44.0	28.0	15.0	8.0	5.0	4.1
23-06	0.1-4.0	0	100.0	100.0	90.0	80.0	72.0	66.0	58.0	64.0	44.0	31.0	17.0	10.0	7.0	6.0	4.6
23-07	1.2-4.1	0	100.0	100.0	100.0	92.0	84.0	79.0	67.0	62.0	51.0	38.0	24.0	15.0	10.0	8.0	6.1
23-08	0.0-5.0	0	100.0	100.0	95.0	90.0	82.0	75.0	65.0	58.0	46.0	35.0	26.0	17.0	9.0	5.0	3.7
23-09	0.0-4.1	0	100.0	100.0	97.0	91.0	81.0	74.0	64.0	60.0	47.0	32.0	17.0	10.0	7.0	5.0	4.1
23-10	0.5-3.9	0	100.0	100.0	85.0	77.0	65.0	60.0	49.0	45.0	36.0	27.0	17.0	9.0	5.0	3.0	2.3
23-11	0.3-2.5	0	92.0	92.0	78.0	70.0	63.0	58.0	49.0	44.0	36.0	27.0	18.0	11.0	6.0	4.0	3.0
23-12	1.9-3.8	0	100.0	100.0	94.0	88.0	77.0	73.0	65.0	62.0	53.0	42.0	31.0	23.0	18.0	14.0	10.3
23-13	2.9-3.8	0	100.0	100.0	95.0	84.0	76.0	70.0	57.0	49.0	32.0	24.0	20.0	15.0	9.0	5.0	3.7
MAX			100	100.0	100.0	96.0	91.0	88.0	85.0	83.0	74.0	56.0	32.0	23.0	18.0	14.0	10.3
MIN			92	92.0	78.0	70.0	63.0	58.0	49.0	44.0	32.0	24.0	15.0	6.0	4.0	3.0	1.9
	SD			2.22	0.89	84.4	7.50	71.5	9.36	10.35	11.51	9.17	6.01 22.1	4.39	3.44	2.84	2.10
MEAN-2SD			99	99.4	77 1	69.9	61.4	56.1	44.8	39.6	26.3	17.9	10.1	4 1	0.0	0.0	4.5
MEAN+2SD			100	100.0	100.0	98.8	91.4	87.0	82.3	81.0	72.3	54.6	34.1	21.6	14.9	11.3	8.5

PROJECT REPORT OF SIEVE ANALYSIS SUMMARIES

PERCENT PASSING

Project: Sample Source: Material:			Trapping Pit Trapping Pit PIT RUN	t Exploratio	'n				F	Project No.: Client: Date:		0 0 2010-12-20					-
Sample Information Test Pit Depth Bag #		ition Bag #					Percent Passing Pit Run Sieve Sizes (mm)										
	(m)	-	75	63	50	37.5	25	19	12.5	9.5	4.75	2.36	1.18	0.6	0.3	0.15	0.075
TP10-01	1.2-2.8	633	84.9	84.9	71.7	65.8	56.7	52.0	45.7	41.7	33.6	25.7	16.8	8.6	5.0	3.9	3.2
TP10-02	0.2-1.6	634	90.9	90.9	85.1	78.9	73.0	68.7	63.9	60.3	45.4	25.6	10.1	4.2	2.3	1.6	1.1
TP10-03	1.3-4.5	635	94.2	94.2	81.6	72.2	61.3	57.1	50.4	45.6	34.7	23.0	12.2	7.1	4.9	3.7	2.7
TP10-04	0.1-2.1	636	95.1	95.1	80.8	77.0	67.1	62.5	55.6	50.4	39.7	29.5	19.8	11.5	5.9	3.6	2.6
TP10-05	0.1-5.0	637	100.0	100.0	86.5	80.1	74.2	66.9	55.7	49.4	33.9	22.0	12.3	6.3	3.6	2.6	2.0
TP10-06	1.3-4.0	638	93.9	93.9	84.7	69.0	63.7	57.7	50.1	46.0	35.4	24.2	13.1	6.8	4.2	3.1	2.3
TP10-08	1.1-5.0	639	100.0	100.0	81.0	71.4	58.6	49.5	43.7	39.4	31.1	24.8	18.9	12.1	7.7	5.9	4.7
TP10-09	1.0-4.6	640	100.0	100.0	86.3	74.3	65.9	61.2	54.9	49.8	36.2	22.0	10.4	5.2	3.4	2.5	1.9
TP10-10	1.0-2.8	705	100.0	100.0	84.9	71.7	61.6	55.1	50.5	45.6	34.8	24.4	15.4	8.5	4.9	3.6	2.9
TP10-11	0.2-2.2	706	86.8	86.8	70.9	60.0	54.5	49.8	43.5	38.9	29.1	19.7	11.1	5.1	2.6	1.8	1.4
TP10-12	3.0-5.0	707	100.0	100.0	86.4	79.3	69.1	63.0	53.3	50.1	39.1	29.0	17.9	7.6	2.4	1.3	0.9
TP10-13	3.0-5.0	708	100.0	100.0	90.9	83.5	74.9	68.9	60.5	54.7	42.4	32.9	24.8	18.6	14.1	10.5	7.8
TP10-14	2.0-5.0	709	100.0	100.0	91.1	81.6	74.8	69.9	63.3	60.1	51.2	41.2	26.3	10.1	3.5	2.0	1.5
TP10-16	0.0-5.0	710	100.0	100.0	71.8	64.1	51.8	45.9	40.5	37.6	30.2	23.4	14.6	6.5	2.8	1.8	1.3
TP10-17	2.0-4.5	704	91.8	91.8	83.6	70.5	62.9	57.1	50.0	44.6	34.9	26.2	16.6	9.6	6.6	5.3	4.4
MAX			100	100.0	91.1	83.5	74.9	69.9	63.9	60.3	51.2	41.2	26.3	18.6	14.1	10.5	7.8
MIN			84.9 5 261550	84.9 5.26	70.9	60.0	51.8	45.9	40.5	37.6	29.1	19.7	10.1	4.2	2.3	1.3	0.9
				95.20	82.5	73.3	64.7	7.08	52.1	47.6	36.8	26.2	4.93	3.02	2.99	2.34	2.7
MEAN-2SD			85	85.3	69.6	59.6	49.7	43.7	37.9	33.6	24.9	15.6	6.2	1.3	0.0	0.0	0.0
MEAN+2SD			100	100.0	95.4	86.9	79.7	74.4	66.3	61.6	48.7	36.9	25.9	15.8	10.9	8.2	6.3

2010 Aggregate Gradation Charts

•

USC Legend

	MATERIALS CLASSIFICATION LEGEND								
	MAJ DIVIS	OR IONS	SYMBOL	SOIL TYPE					
		Ŋ	GW	WELL GRADED GRAVELS OR GRAVEL-SAND					
	OILS	GRAVEL AND GRAVELLY SOII	GP	POORLY-GRADED GRAVELS OR GRAVEL-SAND MIXTURES. < 5% FINES					
) N		GM*	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES					
	AINEI		GC*	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES					
	GR∕	SAND AND ANDY SOILS	SW	WELL-GRADED SANDS OR GRAVELLY SANDS, < 5% FINES					
	SE		SP	POORLY–GRADED SANDS OR GRAVELLY SANDS, < 5% FINES					
	COAF		SM*	SILTY SANDS SAND-SILT MIXTURES					
	0	τ. Ο	SC*	CLAYEY SANDS SAND-CLAY MIXTURES					
	(0)	ND <50	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY					
	SOILS	SILTS AI AYS wL	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS					
	١ED	CL	OL	ORGANIC SILTS AND ORGANIC SILT-CLAYS OF LOW PLASTICITY					
	GRAIN	4ND >50	МН	INORGANIC SILTS, MICACEOUS OR DIATOM- ACEOUS FINE SANDY OR SILTY SOILS, PLASTIC SILTS					
	INE	'S »L	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS					
	LL.	SI	ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS					
	ORG SO	ANIC ILS	Pt	PEAT AND OTHER HIGHLY ORGANIC SOILS					
	TOP	SOIL	TS	TOPSOIL WITH ROOTS, ETC.					
	COBBLES		SB	ROCK FRAGMENTS AND COBBLES, PARTICLE SIZE 75mm TO 300mm					
	LAF BOUL	RGE DERS	LB	BOULDERS, PARTICLE SIZE OVER 300mm					
	BEDROCK BR			BEDROCK					
	FOR S *GM1; GM2; GM3; GM4;	OILS HA GC1; S GC2; S GC3; S GC4; S	WING 5 – M1; SC1; M2; SC2; M3; SC3; M4; SC4;	12% PASSING .075 SIEVE, USE DUAL SYMBOL 12 - 20% 20 - 30% 30 - 40% 40 - 50%					
I				REV. 90-04-26					
				PROVINCE of BRITISH COLUMBIA MINISTRY OF TRANSPORTATION & HIGHWAYS Geotechnical & Materials Engineering					
				UNIFIED SOIL CLASSIFICATION					

LEGEND

Drawn: LU Date: JULY'97 Scale: File No.: ACAD File: ACADSTDS Photos

Photo 1 Crusher set-up area and stockpile space to the right closer to highway; mining area on the left (October 2023).

Photo 2 Proposed stockpile area in the northern part of the pit, looking north. Note stockpile of crushed aggregate and another near the face. (October 2023). February 2024

Photo 3 The eastern mining area, looking south (October 2023).

Photo 4 TP23-07 spoil pile (October 2023).

Photo 5 TP23-08 spoil pile, test pit is on the floor in front of the face in the eastern lower mining area (October 2023).

Photo 6 TP23-09 south of the oversize stockpile (October 2023).

Photo 7 TP23-10 in the centre of the pit (October 2023).

Photo 8 TP23-11 in the northern portion of the pit. Note the asphalt layer at the surface (October 2023).

Photo 9 Crusher set-up, stockpiling, and mining area. Excavator located at TP23-10, view looking southeast (October 2023).