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Abstract 

Projecting future distributions of ecosystems or species climate niches have widely been used to 

assess the potential impacts of climate change. However, variability in such projections for the 

future periods, particularly the variability arising from uncertain future climates, remains a 

critical challenge for incorporating these projections into climate change adaptation strategies. 

We combined the use of a robust statistical modeling technique with a simple consensus 

approach consolidating projected outcomes for multiple climate change scenarios, and exemplify 

how the results could guide reforestation planning.  Random Forest (RF) was used to model 

relationships between climate (1961-1990), described by 44 variables, and the geographic 

distribution of 16 major ecosystem types in British Columbia (BC), Canada. The model 

predicted current ecosystem distributions with high accuracy (mismatch rate = 4-16% for most 

ecosystem classes). It was then used to predict the distribution of ecosystem climate niches for 

the last decade (2001-2009) and project future distributions for 20 climate change scenarios. We 

found that geographic distributions of the suitable climate habitats for BC ecosystems have 

already shifted in 23% of BC since the 1970s. Consensus projections for future periods (2020s, 

2050s, 2080s) indicated climates suitable for grasslands, dry forests, and moist continental cedar-

hemlock forests would substantially expand; climate habitat for coastal rainforests would remain 

relatively stable; and habitat for boreal, subalpine and alpine ecosystems would decrease 

substantially. Using these consensus projections and data on the occurrence of Douglas-

fir (Pseudotsuga menziesii [Mirb.] Franco) in BC ecosystems, we estimated a two-fold increase 

in seedling demand for this frost-sensitive, commercially important timber species, suggesting 

managers could begin planning to expand seed inventories and seed orchard capacity to more 

widely plant this species on logged sites. The results of this work demonstrate the power of RF 

for building climate envelope models and illustrate the utility of consensus projections for 

incorporating uncertainty about future climate into management planning. It also emphasizes the 

immediate need for adapting natural resource management to a changing climate. 

 

Keywords: climate change; forest management; ecosystem; climate envelope; Random Forest, 

consensus map 
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1 Introduction 

As the observed ecological impacts of global climate change become increasingly 

apparent (Dale et al., 2001; Parmesan and Yohe, 2003; Boisvenue and Running, 2006; Parmesan, 

2006; Kurz et al., 2008), so has demand for reliable forecasts about how climate change will 

continue to alter ecosystems. While models projecting ecosystem change have proliferated over 

the last decade, there remains a keen debate about their accuracy (Pearson and Dawson, 2003; 

Midgley et al., 2007; Brook et al., 2009) and how natural resource managers can best use this 

information. Model forecasts about climate change impacts on ecosystems can vary substantially, 

depending on the modeling approach, greenhouse gas (GHG) emission scenario (IPCC, 2007a), 

and General Circulation Model (GCM) used. Finding ways to reduce uncertainty in forecasts 

attributable to modeling approaches yet incorporate uncertainty about future GHG emissions and 

climate into natural resource management planning processes will be key to social, economic and 

ecological sustainability in a changing climate (Prato, 2008; Trenberth, 2010).  

Projections of future ecosystem change can be achieved with either niche-based climate 

envelope models or process-based mechanistic models. Mechanistic models simulate an array of 

ecological processes and they have been used forecast changes in ecosystem biomass and 

productivity as well as changes in geographic distribution of vegetation types, species, or 

ecological zones (e.g., Peng, 2000; Coops et al., 2009; Morin and Thuiller, 2009; Coops and 

Waring, 2011).  The computational complexity and the large data requirements needed to 

parameterize these models can present challenges for generating accurate forecasts about 

ecosystem change across vast, mountainous regions (Mohren and Burkhart, 1994; Porte and 

Bartelink, 2002). Because of this, climate envelope models ─ also called bioclimate envelope 

models, or more generally, ecological niche models ─ have been used more widely to date. They 

correlate readily available occurrence data with climate variables to model the geographic 

distribution of realized climate niches for any biological entity (e.g., allele, population, species, 

ecosystem, vegetation community, natural disturbance, or biome). Climate envelope models of 

ecosystem change have been criticized for their failure to account for species migration capacity, 

changes in species interactions, and alterations to biogeochemical cycles, including increased 

atmospheric CO2 concentrations (Pearson and Dawson, 2003; Araujo and Guisan, 2006; Austin, 

2007; Botkin et al., 2007; Thuiller et al., 2008). While species dispersal considerations are 

important when the goal is to project actual geographic distributions, climate envelope models do 

not project actual future ecosystem or species distribution, per se, but rather the distribution of 

climatically suitable habitats, or ‘climate niches’, which are the target of many ecosystem 

management activities. As Rehfeldt et al. (2012) recently suggest, the assumption of stable 

species interactions in ecosystem climate envelope models is only invalidated under novel future 

climates and robust methods for incorporating biogeochemical processes are not yet well-

developed for either climate envelope or mechanistic modeling approaches. We believe that 

when the results of climate envelope model projections are appropriately conveyed and used 

with their limitations in mind, they can provide a powerful framework for evaluating and 

illustrating potential climate change impacts and guiding land-use planning.  

Recent studies demonstrate that substantial variability in projected distributions of future 

climate envelopes can be attributed to the use of different statistical modeling techniques 

(Hampe, 2004; Araujo et al., 2005; Heikkinen et al., 2006; Pearson et al., 2006; Dormann et al., 

2008; Diniz et al., 2009; Coops and Waring, 2011). To cope with the variable outcomes 
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associated with different statistical techniques, an increasing number of studies implement an 

approach that fits multiple models and combines them into a consensus forecast (Heikkinen et al., 

2006; Araujo and New, 2007; Diniz et al., 2009; Marmion et al., 2009).  However, including 

poor models may compromise the accuracy of projections. The use of multiple models also 

introduces an additional source of projection variability, which can be substantial (Dormann et 

al., 2008; Mbogga et al., 2010) and even larger than projection variability generated by the use 

of different climate change scenarios (Diniz et al., 2009).  

Since the accuracy of statistical models can be independently examined, Marmion et al. 

(2009) recommend that either the most accurate model alone, or a consensus approach 

combining multiple models that have a good model-fit, be used. In this study, we chose to use a 

single statistical technique to focus on examining uncertainty in projected future ecosystem 

distributions associated with a wide range of possible future climates (see below) as the accuracy 

of climate change scenarios cannot be evaluated and the uncertainty of the future climate is not 

likely to be reduced (Trenberth, 2010). We used a machine-learning method, Random Forest 

(RF), to build climate envelope models. RF models were found to be superior to, or among the 

best of a variety of statistical techniques, for building climate envelope models (Lawler et al., 

2006; Rehfeldt et al., 2006; Elith et al., 2008; Marmion et al., 2009; Attorre et al., 2011; Iverson 

et al., 2011). They have been used extensively for this purpose in North America (Rehfeldt et al., 

2006; Iverson et al., 2008; Rehfeldt et al., 2008; Crookston et al., 2010) and other parts of the 

world (Lawler et al., 2006; Elith et al., 2008; Attorre et al., 2011).  

Uncertainty about future climates presents a challenge both for forecasting the ecological 

impacts of climate change and for sustainable management of natural resources. Often, 

projections about climate change impacts are based on a single “mid-range” climate change 

scenario or small number of GCMs and GHG emission scenario combinations (hereafter referred 

to as “climate change scenarios”) used to represent a wide array of equally plausible future 

climates (IPCC, 2007b). These strategies reduce computational effort and simplify interpretation 

for decision-makers; however, relying on only one or few arbitrarily selected climate change 

scenarios increases the likelihood of producing biased projections. Alternatively, averages of 

future climate (de Castro et al., 2007; Serrat-Capdevila et al., 2007; Jackson et al., 2011) can be 

used to make projections; they consider a large number of climate change scenarios without an 

unmanageable increase in computational effort or complexity. However, with this approach, the 

individuality of each climate change scenario, in terms of spatial and temporal variation, is lost. 

To avoid this problem, and to incorporate climate uncertainty in forecasts, we first projected the 

future distribution of each ecosystem climate niche using each of a selected subset of climate 

change scenarios separately, then combined the results of multiple projections into a single 

‘consensus’ map on which each pixel is identified as the ecosystem climate most frequently 

projected across all climate change scenarios.  

With an ecological land classification system used widely for natural resource 

management in British Columbia (BC), Canada, we illustrate ways of reducing and managing 

uncertainty in projecting the future distributions climates characterizing BC ecosystems by: 1) 

using RF to develop a climatic envelope model of contemporary ecosystem distribution; 2) 

implementing a consensus method to project the contemporary climate envelopes for ecosystems 

into future climate space; 3) illustrating how variability in projected outcomes due to different 

climate change scenarios can be conveyed on maps; and 4) exploring how these maps can be 

used to guide forest management with a case study in reforestation. While climate envelopes for 
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ecosystems can be more challenging to accurately delineate than climate envelopes for their 

constituent species (e.g., Rehfeldt et al. 2006), there are advantages to projecting shifts in the 

geographic distribution of ecosystem climate envelopes. In British Columbia, ecosystem units 

are used as the basis for guiding forest management practices, including selection of the most 

appropriate trees species used for reforestation. Projections for ecosystems have multiple uses; 

they can also guide climate change adaptation strategies for other natural resources, such as the 

conservation of critical wildlife habitat, endangered species habitat, and culturally important 

ecosystem attributes. Moreover, presence/absence data are not adequate to develop climate 

envelope models for many species and, therefore, well-delineated ecosystem units can serve as 

surrogate climate niches for these species. When climate envelopes can be developed for 

individual species though, they can be used in conjunction with ecosystem projections to guide 

management (e.g., Rehfeldt et al. 2006; Iverson et al. 2008). 

 

2 Methods  

2.1 Ecosystems of British Columbia 

The Biogeoclimatic Ecosystem Classification system of BC (Meidinger and Pojar, 1991) 

divides the province into 16 ecological zones that reflect terrestrial ecosystem differences along 

large-scale climate gradients related to changes in altitude, latitude and continentality (Table 1). 

These ecological zones cover large geographic areas (up to 172,260 km
2
) that are subdivided into 

increasingly smaller units called subzones and subzone-variants, reflecting plant community 

composition and structure differences along finer-scale climate gradients. Subzones have distinct 

regional temperature and precipitation regimes while subzone-variants are slightly drier, wetter, 

snowier, warmer, or colder than the average subzone climate. These ecological units are widely 

used for resource management planning and decision-making in BC. 

Ecological zones, subzones, and subzone-variants of BC were mapped by extrapolating 

the classification of field vegetation plots across landscapes using elevational rules and aerial 

surveys of physiography (Meidinger and Pojar, 1991). We used the latest version of this map 

(version 7) (http://www.for.gov.bc.ca/hre/becweb/) to build our climate envelope model of 

ecosystem distribution in BC. The map, hereafter referred to as the Forest Service ecosystem 

map, was rasterized to grid resolutions of 1600 m (370,205 cells) and 800 m (1,904,654 cells) in 

ArcGIS (version 9.2) for model building and model validation, respectively. Each cell was 

assigned to the ecosystem (i.e., zone, subzone, and subzone-variant) occurring at the center of 

each cell.   

 2.2 Climate data 

We used ClimateWNA (version 4.6) (Wang et al., 2012) to generate climate data.  

ClimateWNA downscales PRISM grids (2.5 x 2.5 arcmin, ~4 x 4 km) of interpolated monthly 

temperature and precipitation data (Daly et al., 2002) for the normal reference period 1961-1990 

(1970s) to generate point estimates of monthly temperature and precipitation at a finer grid 

resolution appropriate for analyses of climate change impacts in mountainous regions. 

ClimateWNA also downscales historical and future climate data, and outputs monthly, seasonal 

and annual temperature and precipitation variables, as well as derived annual climate variables of 

biological significance to plants.  

http://www.for.gov.bc.ca/hre/becweb/
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 To generate the climate data needed for building a model of ecosystem-climate 

relationships for the 1961-1990 reference period, the elevation of each of the 370,205 cells in a 

1600 m grid of the Forest Service ecosystem map was extracted from a 90 x 90 m digital 

elevation model (DEM) obtained from the Shuttle Radar Topography Mission (SRTM). An input 

file containing point location coordinates (latitude, longitude, and elevation) for each rasterized 

grid cell was queried by ClimateWNA to generate 12 annual, 16 seasonal, and 48 monthly 

climate variables for each grid cell. The same procedures were followed using 1,904,654 cells in 

a 800 x 800 m grid to generate climate data for: 1) the reference period to validate our model, 2) 

the last decade (2001-2009) to assess the effects of recent climate change, and 3) three future 

periods (2020s, 2050s and 2080s) to project impacts of future climate change. For climate data 

spanning 2001-2009, we calculated averages for each climate variable over the nine years in that 

period. 

To address the issue of uncertainty in projected future ecosystem distributions due to 

climate change scenarios, we selected scenarios to represent the range and distribution of equally 

plausible future climates. We considered the variation in projected future climates for, GHG 

emission scenarios (A2, B1, and A1B), GCMs, and model runs for each GCM simultaneously, 

plotting projected changes in mean annual temperature and precipitation from 133 such 

combinations for 2050s. A Regional Analysis Tool developed by the Pacific Climate Impact 

Consortium (http://www.pacificclimate.org) was used to assist with this analysis. We selected 20 

climate change scenarios (Table 2 and Fig.1), of which 10 were recommended for climate 

change analyses in BC to represent the range of the temperature-precipitation combinations 

(Murdock and Spittlehouse, 2010). Another 10 were selected randomly to represent the 

distribution with modification to avoid inclusion of highly similar scenarios. In total, the model 

runs yielded 60 projections (i.e., three future periods x 20 climate change scenarios) of the future 

distribution of ecosystem climate envelopes.  

2.3  Modeling relationships between climate and ecosystem distribution 

We used the R version (Liaw and Wiener, 2002) of Breiman’s (2001) of the Random 

Forests (RF) algorithm to model relationships between climate for the 1970s reference period 

and the geographic distribution of ecosystems in BC. RF produces many classification trees, 

collectively called a ‘forest’, and aggregates the results over all trees. Each of these decision 

trees in the forest is constructed using a bootstrap sample of the input data (i.e., a random sample 

with replacement) so that the resulting dataset (‘bagged sample’) contains about 64% of the 

original observations, and the remaining observations comprise the ‘out-of-bag’ (OOB) sample. 

Tree nodes (bifurcations in a branch) are created using the climate predictor variable that has the 

smallest classification error among a randomly selected subset of predictor variables. By default, 

the number of predictors randomly selected at each node is the square root of the total number of 

predictors. Using the trees grown with the bootstrap sample, each of the independent 

observations in the OOB sample is classified (assigned to an ecosystem) and a model prediction 

error, called the OOB error (% of incorrectly classed observations), is calculated.  

To calibrate the model, we compared OOB prediction errors for models using four 

different sets of climate variables: 1) 12 annual variables, 2) 16 seasonal variables, 3) 48 monthly 

variables; and 4) all 76 climatic variables.  The variable set with the lowest OOB error was used 

to build the model. The number of predictors selected at each node was optimized using the 

function tuneRF. RF was run with 200 classification trees; use of a larger number of these 

decision trees did not reduce OOB error. For the model that included all 76 climate variables, 

http://srtm.csi.cgiar.org/
http://www.pacificclimate.org/
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importance values (as determined by a decrease in Gini values, see Brieman 2001) generated by 

RF were used to reduce the number of climate variables included in the model without 

compromising model accuracy. 

The RF model was built at the subzone-variant level and results were summarized at the 

ecosystem zone level. As subzone-variants differed greatly in geographic area, using all grid 

cells (observations) in the grid generated small samples for small subzone-variants, which 

resulted in their being poorly modeled. We reduced OOB errors for smaller subzone-variants by 

increasing their relative representation through reducing sampling intensity for larger subzone-

variants having more than 2000 observations using a graduated sampling strategy. The number 

of randomly sampled data points (ni) was calculated as follows: 

[1]  ni=2000 + [n(ln(10
5
/n/10)-780]   

where n is the total number of data points in a subzone-variant. After model calibration, OOB 

errors for the final RF model were compared to prediction errors of a previous model (Hamann 

and Wang, 2006), which used discriminant analysis to predict ecosystem class from climate 

variables. We chose the subzone-variants having 2000 observations as the threshold to apply 

gradual sampling because the OOB errors were considerably larger for the subzone-variants 

having less than 2000 observations.  

The RF model was validated by comparing BC ecosystem maps predicted using 800 m 

grid climate datasets for the reference period (1960-1990) with the BC Forest Service ecosystem 

map. Model fit (observed vs. predicted) was quantified with pixel-by-pixel comparison of 

ecosystem class. Mismatch rate (%) was calculated as the percentage of observations where the 

predicted ecosystem unit in RF differed from the observed ecosystem unit on the Forest Service 

ecosystem map. 

2.4 Assessing effects of climate change on ecosystem climate niche distributions 

To assess the impact of recent climate change on ecosystem, we compared predictions of 

ecosystem climate niches for the reference period 1961-1990 with predictions for 2001-2009. 

Future impacts were similarly quantified by comparing ecosystem climate niches projected for 

future periods (2020s, 2050s and 2080s) with the reference period. Shifts in geographic 

distributions of ecosystem climate niches were used to estimate the loss and gain of areas of 

suitable climate for each ecosystem unit. Model output was gridded and mapped at 800 m 

resolution. 

To consolidate variation in projected ecosystem climate niches among the 20 selected 

climate change scenarios, we generated a single consensus map for each of the three future 

climate periods by mapping the climate niches for subzone-variant most frequently projected for 

each pixel. Assuming the degree of agreement among projections reflects the level of certainty 

about future ecosystem type, we produced additional maps showing the degree of consensus 

among scenarios as measured by the frequency (%) with which an ecosystem class was projected 

for a map pixel. Similarly, for each future time period, we mapped whether a pixel was projected 

to have remained within the climate envelope of the same ecosystem unit or shifted to another 

ecosystem’s climate niche since the 1970s, according to the frequency of votes for ecosystem 

change among all 20 scenarios. Together, these maps provide natural resource managers in BC 

with an indication of the regions that are likely to experience the most change, what those 

changes will be, and a measure of confidence regarding that change. To illustrate the effect that 

different climate change scenarios had on projections of future ecosystem climate niches, we 
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mapped future climate envelope for ecosystem zones using five extreme and one middle-of-the-

road climate change scenario for the 2050s (see Fig. 1).  

2.5 Case study:  Ecosystem climate niche shifts and reforestation with Douglas-fir 

(Pseudotsuga menziesii)  

Few studies provide examples of how projections about shifts in ecosystem climate 

niches can be incorporated into natural resource management planning. Given BC’s ecosystem 

classification is used to guide the selection of native tree species planted after logging, we 

exemplified the utility of our consensus projections for estimating the number of Douglas-fir 

(Pseudotsuga menziesii [Mirb.] Franco) seedlings needed for future reforestation. Douglas-fir is 

among the most valuable timber species in BC; approximately 15 million seedlings are planted 

annually for the two varieties of Douglas-fir: Coastal Douglas-fir (P. menziesii var. menziesii) is 

widely planted in the maritime CWH zone, and interior Douglas-fir (P. menziesii var. glauca) is 

planted in several zones with continental climates (primarily in the ICH, IDF, and SBS zones, 

with limited use in the MS, BWBS and SBPS zones). 

We predicted the distribution of Douglas-fir’s climate envelope for the reference period 

(1961-1990), and the 2020s, 2050s and 2080s following Hamann and Wang (2006). The 

frequency of major species in BC including  Douglas-fir has been estimated for each ecosystem 

unit (subzone-variant) (Hamann et al., 2005). Through associating the frequency of Douglas-fir 

for each ecosystem unit with RF consensus projections of ecosystem climate niche distribution, 

we projected the climate envelope for this species in future periods. Our climate envelope for 

Douglas-fir corresponded well to Little’s (1978) published range map indicating strong climatic 

controls on its geographic distribution. Assuming stable forest harvest rates, the average number 

of Douglas-fir seedlings annually planted per hectare in each subzone-variant from 2000- 2010 

was multiplied by the projected areal extent (ha) of each subzone-variant climate niche in the 

future to estimate the number of seedlings needed to reforest logged sites. Changes in seedling 

demand relative to present were calculated for the projected future distribution of ecosystem 

climate envelopes. This example provides a tangible indication of the implications of climate 

change for Douglas-fir reforestation for foresters, seed collectors, seed orchards, and seedling 

nurseries.  

 

3 Results 

3.1 Random Forest Model  

Use of all 76 climate variables, rather than separate sets of climate variables (i.e., annual, 

seasonal, or monthly), yielded the lowest OOB error (Fig. 2). However, to produce the most 

parsimonious model, the number of climate variables included in the final model was reduced 

based on importance values to a subset of the most influential variables (27 monthly, 13 seasonal, 

and 4 annual climate variables), without significantly increasing OOB error (Table 3). Reducing 

the sample size drawn from geographically large subzone-variants in a non-linear fashion (Fig. 

3a) reduced OOB error substantially for 83% of ecosystems (smaller ones with < 8000 data 

points) but increased it slightly for large ones (with > 8000 data points) (Fig. 3b), resulting in an 

overall reduction in the average OOB error across all ecosystems. The final RF climate envelope 
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model used 44 climate variables ─ from which 12 (the optimized number determined by tuneRF) 

were randomly selected at each node of a decision tree and 200 classification trees.  

Model errors of fit (mismatch rates) were low (4% to 16%) for all ecosystems except the 

three alpine ecosystems (CMA, BAFA, and IMA) and the subalpine Mountain Hemlock (MH) 

ecosystem (21-32%) (Table 4). There was a near perfect correspondence of the RF predicted 

map with the BC Forest Service ecosystem map for the low and mid-elevation zones (Fig. 4a and 

4b). A possible explanation for high mismatch rates among some high-elevation ecosystems was 

revealed using finer resolution RF model runs (based on 90 m DEM from SRTM) for coastal BC. 

High prediction errors for the Coastal Mountain-heather Alpine (CMA) and MH were mostly 

because the model was unable to discriminate between the MH and CMA zones, which occur in 

elevational sequence below and above treeline, respectively (Fig. 5a and 5b). When the Forest 

Service ecosystem map and the predicted distributions of these ecosystems were superimposed 

onto a satellite image, we observed that the areas mapped by the Forest Service as CMA but 

predicted to be MH by the RF model, were generally forested and thus subalpine (MH), not 

alpine (CMA). This suggests that the majority of classification errors near treeline in these zones 

result from mapping rather than our modeling approach, and the high mismatch rates do not 

necessarily mean our models predict these high-elevation ecosystems poorly. Less frequent 

sampling of these high-elevation zones and different methods used to delineate the treeline 

boundary likely contributed to their apparent mis-classification on the BC Forest Service 

ecosystem zone map.  

Our calibrated RF model correctly predicted ecosystem class from climate variables more 

frequently than the discriminant analysis techniques used by Hamann and Wang (2006), 

indicating the RF model was more accurate. OOB prediction errors for the calibrated RF model 

were 12% lower than prediction errors produced by the discriminant model for the ecological 

zones, and 35% lower for the subzone-variants (Fig. 6).  

3.2 Shifts in ecosystem climate niche 

Based on a comparison of mapped predictions of ecosystem distributions for the 1970s 

and for 2001-2009, we calculated that about 23% of geographic area of BC has already shifted to 

climates characteristic of different ecosystem zones (Fig. 4 b and c). The magnitude of the shift 

(loss or gain) varied between 5 and 77% among ecosystems. The most affected ecosystems 

included some high-elevation ecosystems (IMA and MS) and sub-boreal ecosystems (SBPS and 

SWB). The loss of their suitable climate ranged from 46 to 59% of their total area. Substantial 

range expansions (between 51 and 77%) were projected for some ecosystems, including Interior 

Douglas-fir (IDF), Ponderosa Pine (PP), Bunchgrass (BG) and Interior Cedar Hemlock 

ecosystem (ICH) zones. Most of these (ID, PP and BG) are dry ecological zones. The least 

affected were two coastal (CDF and CWH) and one boreal zone (BWBS).   

Consensus projections of ecosystem distribution (Fig. 4d-f) suggest that impacts on BC 

ecosystems will intensify as climate change accelerates in future periods. Vulnerability to a 

changing climate was projected to differ substantially among ecosystems (Table 5; Fig. 4). By 

the end of the century, loss of area covered by ecosystem climate envelopes for the reference 

period (1961-1990) was projected to range from 2 to 96% (mean = 56%), and ecosystem climate 

envelopes were projected to shift 70-455 m (mean = 209 m) upward in elevation and 2-278 km 

northward (mean = 84 km northward) (Table 5). High-elevation (BAFA, IMA and MS) and sub-

boreal ecosystems (SBPS, SBS and SWB) were most vulnerable and over 80% of the area 
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covered by their climate envelopes was projected to be lost by the end of the century. In contrast, 

the area covered by climate envelopes for grasslands (BG), dry forested ecosystems (PP and IDF) 

and Interior Cedar Hemlock ecosystems (ICH) were projected to expand, with the area predicted 

to have interior rainforest (ICH) climates expanding three-fold and becoming the most common 

climate type in BC by 2080. The extent of low elevation boreal (BWBS) and coastal (CWH and 

CDF) ecosystems was projected to remain relatively unchanged. 

Confidence in consensus projections about future ecosystem climate niche distribution 

varied over time and space (Fig. 7a-7c). Consensus was moderate to strong in the 2020s, with 

agreement on projected ecosystem averaging 66% across all pixels. By the 2080s, projections 

became less certain with average consensus of projected ecosystem for a pixel declining to 51%. 

Future ecosystem climate niches were projected with greatest confidence in northeast BC and 

along parts of the coast. Only relatively small areas of BC were projected to remain unchanged 

by 2080 (Fig. 7d -7f).   

The range of climate change impacts on ecosystem climate niches was examined by 

comparing the predicted reference period (1961-1990) ecosystem distribution (Fig. 4b) with 

projections based on five extreme and one middle-of-the-road climate change scenarios (Fig. 8). 

For example, by 2050, climates characterizing the SWB boreal ecosystem of northern BC (Fig. 

4b) were largely replaced by more southern subalpine climates (ESSF) under the middle-of-the-

road climate change scenario 19 (~2°C temperature increase and ~8% precipitation increase) 

(Fig. 8). Under the hottest scenario (scenario10: ~3.7°C temperature increase and unchanged 

precipitation), the SWB climate was replaced by the climates of either the subalpine ecosystem 

ESSF or the sub-boreal ecosystem SBS (Fig. 8). Similarly, by 2050, the geographic extent of the 

temperate rainforest climate associated with Interior Cedar Hemlock (ICH) ecosystems is 

projected to expand over much of southern BC, but only under scenarios projecting temperature 

increases >~2.5°C (e.g., scenarios 2, 20, 10), reaching their greatest extent under scenarios 

projecting increases in precipitation around 10% (e.g. Fig. 8, scenario 20). The extent of hot, dry 

climates typical of BG, PP, and IDF ecosystems nearly double and alpine climates virtually 

disappear by the 2050s under extreme warming scenarios projecting increases over ~3.3 °C (e.g., 

Fig. 8, scenario 10). 

3.3 Case study: projected changes in seedling requirements for reforestation 

We projected substantial expansion of the geographic area with suitable climate for 

Douglas-fir in future periods (Fig. 9). Such expansions were projected to occur throughout 

coastal and southern BC, resulting in doubling of the total area potentially suitable for this 

species at the end of the century. Consequently, we projected a corresponding increase in 

Douglas-fir seedling demand for reforestation by 110, 160 and 220% by the periods 2020s, 

2050s and 2080s, respectively, relative to the average number of seedlings (about 15 million) 

planted annually over the past 11 years (2000 – 2010) (Figure 10). This estimate assumes current 

rates of logging and reforestation continue, and no major changes in silvicultural practices occur. 

These increases were mainly attributable to the expansion of the geographic area of climate 

envelopes for CWH, ICH and IDF ecosystems, in which Douglas-fir is currently used as a major 

species for reforestation. The planting of the coastal variety is projected to increase by 340% 

(CWH only), while planting of the interior variety is projected to increase by 170% (all other 

zones) at the end of this century. In other zones, the predicted increase in potential planting rates 
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are relatively low, but those zones do not account for much of the total Douglas-fir planting in 

the province.   

 

4 Discussion  

4.1 Model accuracy  

The accurate predictions of BC ecosystem climatic envelope distributions using Random 

Forest (RF) support previous reports on the strong performance of RF models (Lawler et al., 

2006; Rehfeldt et al., 2006; Elith et al., 2008; Marmion et al., 2009; Attorre et al., 2011). The  

accuracy of RF models is largely because the method exploits two sources of randomness: 

random bootstrap input of observations (bagging) used to build the model, and splitting of 

classification tree nodes using a random subset of predictors, thus overcoming the collinearity 

and over-fitting problems of other statistical techniques (Breiman, 2001; Liaw and Wiener, 2002; 

Prinzie and Van den Poel, 2008).  Moreover, RF is an ensemble classifier, which means it 

aggregates predictions across many classification trees, generating more robust predictions than 

most single-tree methods (Breiman, 2001; Cutler et al., 2007).  

In most cases, annual climate variables are used to build climate envelope models with 

RF. However, we found that the accuracy of our RF model could be improved by including 

seasonal and monthly variables suggesting that the seasonal and monthly climate patterns are 

also important to predict ecosystem climate niches. Partially balancing sample sizes among 

classes also improved the model because it struck a balance between the need to have somewhat 

more samples in geographically large ecosystems than small ones (to adequately deal with 

greater spatial heterogenity in climate across large ecosystems) and the need to increase relative 

sample sizes of small ecosystems.  

4.2 Climate change and geographic shifts in ecosystem climates   

Predictions based on weather instrument records from 2001-2009 indicated that 23% of 

the climate envelopes for ecosystems have already shifted to another ecosystem’s climate since 

the 1970s. The magnitude of this change was surprising; it was essentially equal to changes 

projected for the 2020s despite average temperature increases for 2001-2009 being smaller 

(0.71°C) than  projected increases for the 2020s (1.17°C). This is probably because increased 

temperature during 2001-2009 was not accompanied by increased precipitation (-0.5%) − as the 

expansion of grassland (BG) and dry forest climates would suggest − while the GCMs used for 

2020s projections on average included an increase in precipitation (averaging 3.3% over the 20 

climate scenarios, Fig. 1). We acknowledge that decadal-term climate data can deviate from 

normal (30-year) data due short-term climatic variability other than anthropogenic climate 

change, such as that due to the Pacific Decadal Oscillation (PDO), may have affected climate 

during this period (2001-2009). However, the average PDO indices are about the same for the 

reference period (-0.0619) and this period (-0.0625) based on the data provided by the University 

of Washington (http://jisao.washington.edu/pdo/), suggesting the difference in climate between 

these two periods is not directly attributable to the PDO effect.    

Our consensus projections indicate potential for substantial shifts in the geographic 

distribution (i.e., location and extent) of most BC ecosystem climate niches over the next century. 
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The climate envelopes for relatively productive, mild interior cedar-hemlock (ICH) forests, 

interior Douglas-fir (IDH) and Coastal Western Hemlock (CWH) rainforests were projected to 

expand over much of BC at the expense of climate envelopes for less productive sub-boreal, 

subalpine, and alpine ecosystems. These changes suggest British Columbia could contribute to 

increased forest productivity and carbon sequestration through reforestation activities, provided 

suitable tree species and populations are planted to match up with the new climatic conditions 

(Aitken et al., 2008). Such opportunities may not be common on a global scale as terrestrial 

ecosystems become net carbon sources due to widespread forest dieback and more severe natural 

disturbances, which provide a positive feedback to global warming (Scholze et al., 2006; 

Heimann and Reichstein, 2008; Finzi et al., 2011).  

Our projections of potential future ecosystem climate are broadly consistent with other 

RF model projections developed over larger-scales for western Canada (Mbogga et al., 2010), 

the western USA (Rehfeldt et al., 2006) and North America (Rehfeldt et al., 2012). All models 

projected the expansion of climates supporting grasslands, dry forests and interior wet forests; 

major reductions in the distribution of colder montane climates supporting alpine and subalpine 

ecosystems, and relative stability of the extent of coastal temperate rainforest climates. Our 

projections differed most notably from Mbogga et al. (2010) and Rehfeldt et al. (2012) in the 

boreal forest region of northeastern BC (BWBS). While we projected little change in the 

distribution of boreal climates of northern BC, the RF model of Mbogga et al. (2010) projected a 

large proportion of BWBS being replaced by temperate dry forest typical to southern Alberta; 

Rehfeldt et al. (2012) projected a northwestward expansion of the cool temperate steppe climates 

(typical to the central United States) into current BWBS zone. These discrepancies can likely be 

attributed to our model projections being constrained to ecosystems currently present in BC, 

which limited our ability to account for the expansion of climates from surrounding regions. 

However, differences in ecosystem classifications among BC and Alberta, as well as, different 

climate change scenarios, RF model calibrations used and projection scales, may also explain 

why our projections for northern BC depart from those produced by Mbogga et al. (2010) and 

Rehfeldt et al. (2012).   

While consensus projections illustrated consistent patterns of potential change in 

distributions of ecosystem climate niches across broad gradients of future temperature and 

precipitation,  the maps of consensus strength (Fig. 7) together with projections for individual 

climate change scenarios for 2050 (Fig. 8) provided insight about ecosystem sensitivity and 

threshold responses to climate change. We found that subalpine boreal Spruce-Willow-Birch 

(SWB) and Sub-Boreal Spruce (SBS) ecosystems were amongst the most sensitive to climate 

change. While we projected stable boreal (BWBS) ecosystems of northeastern BC (see 

discussion above), the virtual disappearance of these other boreal climates is the first large 

projected change to occur in BC under optimistic climate change scenarios, which incorporate 

social and economic constraints on GHG emissions and modest mean air temperature increases. 

The sensitivity of boreal regions to climate change is widely acknowledged, with future 

ecosystem shifts in western boreal forests expected as climate change increases disturbance 

severity and reduces boreal tree regeneration success (Hogg and Schwarz, 1997; Soja et al., 2007; 

Lenton et al., 2008; Gonzalez et al., 2010). Alpine ecosystems are also expected to be highly 

sensitive to global warming, with only small increases in temperature quickly generating 

ecosystem changes (Gottfried et al., 1998; Theurillat and Guisan, 2001; Kullman, 2002). While 

BC alpine ecosystem are quite sensitive to climate change, our projections indicated substantial 
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variation in the sensitivity of BC alpine ecosystems (BAFA, CMA, IMA), a finding that is 

consistent with other studies conducted across large, subcontinental scales (Lenton et al., 2008). 

Other substantial BC ecosystem shifts ─ such as the replacement of subalpine ecosystems by 

more productive lower elevation forests and conversions of forests to the pine savanna (PP 

climate) or grasslands (BG climate) ─ are most likely under more pessimistic climate change 

scenarios with larger temperature increases and precipitation changes.  

4.3 Uncertainty and management applications  

Uncertain future ecosystem distributions pose major challenges for natural resource 

managers. This uncertainty can be reduced when forecasts are built using powerful statistical 

modeling techniques (Elith et al. 2008; Lawler et al 2006; Marmion et al. 2009), including RF. 

However, uncertainty associated with an array of plausible future climates must be assimilated 

into management planning. Our consensus maps of the most frequently projected ecosystem 

climate niches for a wide range of future climates, accompanied by maps of model agreement 

(Fig. 7A-7C), provide resource managers with a measure of certainty about the future 

distribution of ecosystem climates.  

Management may be more straightforward for regions where model consensus is strong 

and where ecosystems are projected to change little over time (e.g., southern coastal BC; wet 

mountainous areas of southeastern BC; and the boreal zone of northeastern BC) (Fig. 7). 

However, in situations where agreement among model projections is low, management will be 

more complex, requiring flexible policy frameworks that facilitate a varied portfolio of 

management activities (including some new ones) that capitalize on new climatic environments 

and reduce the risk of catastrophic socio-economic losses. Spatial variation in management 

practices applied at stand and landscape levels should be higher in areas with more uncertain 

futures.  

The Douglas-fir case study demonstrated how projected shifts in ecosystem climates 

could be applied to project changes in the climate envelopes for individual tree species, which in 

turn could be used to determine where a species could be planted in the future and approximate 

the number of seedlings needed for planting in future climates. We projected that climate habitat 

for Douglas-fir would expand substantially in the future as the climate becomes more suitable for 

this frost-sensitive species at higher elevations and at more northerly latitudes. Our finding 

agrees with other published projections, although Hamann and Wang (2006) projected a more 

dramatic expansion of Douglas-fir habitat in BC as northeastern boreal ecosystem climates 

transitioned to climates for Interior Douglas-Fir ecosystems. While Rehfeldt et al. (2006) 

projected increases in Douglas-fir habitat in the western United States until 2060, and then a 

slight decrease for 2090, McKenney et al. (2007) projected an increase when the entire species 

range was considered.  Expansion of suitable Douglas-fir climates in BC suggests it would be 

appropriate to reforest logged sites with this species over a much larger geographic area than in 

the past, and planning to expand seed source inventories and seed orchard capacity to facilitate 

increased planting over larger areas could begin now, if the ecological risks of species range 

expansion are deemed sufficiently low and there is social acceptance of this expansion on public 

lands. Our consensus-projection-based estimation of seedlings needed for the future periods 

provides a reasonable guess to start with for planning considering multiple climate scenarios.  

While our RF model more accurately predicts the geographic distribution of BC 

ecosystem climate niches than the previous model (Hamann and Wang 2006), it does not yet 
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account for the possibility that novel climate niches will develop as the global climate continues 

to change. As mentioned above, Mbogga et al. (2010) and Rehfeldt et al. (2012) projected the 

expansion of dry grassland and steppe forest climates from south-central Alberta and central 

United States into northeastern BC. Climate adaptation strategies in these novel BC climates 

could be similar to the guidance already provided for managing these ecosystems in Alberta. 

Rehfeldt et al. (2012) also project the development of climates in southeastern BC that are novel 

to all of North America. In these situations, like those where projections about future climate 

niches are highly uncertain, management to adapt to climate change will be more complex, 

requiring a varied portfolio of activities that spread the risk of management failures.      

This study demonstrates that climate envelope models built with RF provide a more 

accurate basis for projecting the potential effects of climate change on BC ecosystems than 

previously used statistical approaches. It also shows how mapped consensus projections can 

incorporate uncertainty about future climate into the development of climate change adaptation 

strategies. We emphasize that these climate change models do not necessarily project the future 

distribution of ecosystems or their constituent species. Within ecosystem climate niches, local 

topography (e.g., aspect and slope) or specific site conditions (e.g., soil texture) may modify 

climate impacts on the distribution of species and species assemblages. Until climate envelope 

models are better able to incorporate these local effects into projections, or they can be integrated 

with mechanistic models implemented over smaller spatial scales, we will continue to rely on 

local expertise to appropriately implement the results of ecosystem climate niche models.  
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Table 1   Characteristics of ecological zones in British Columbia. All values are averages except area, which is a total. 

Ecosystem  zone 
Latitude 

N (°) 

Longitude 

W (°) 

Elevation 

(m) 

Area 

(million ha) 

MAT* 

(°C) 

MAP 

(mm) 

CONT 

(°) 

Boreal Altai Fescue Alpine (BAFA) 57.49 128.66 1685 7.6 -2.5 1101 22.5 

Bunchgrass (BG) 50.73 121.11 610 0.3 5.9 342 23.8 

Boreal White and Black Spruce (BWBS) 58.17 123.88 719 15.7 -0.3 514 30.3 

Coastal Douglas-fir (CDF) 49.04 123.71 73 0.2 9.5 1092 13.9 

Coastal Mountain-heather Alpine (CMA) 54.02 128.60 1561 4.4 0.0 3197 19.2 

Coastal Western Hemlock (CWH) 51.61 127.01 418 10.8 6.5 2900 15.0 

Engelmann Spruce ─ Subalpine Fir (ESSF) 53.39 122.30 1552 17.2 0.3 1103 22.1 

Interior Cedar ─ Hemlock (ICH) 51.99 120.61 977 5.6 3.2 919 23.0 

Interior Douglas-fir (IDF) 50.84 120.89 1019 4.5 3.9 493 22.8 

Interior Mountain-heather Alpine (IMA) 51.61 119.01 2261 1.2 -1.6 1570 20.6 

Mountain Hemlock (MH) 52.78 127.29 1065 3.6 2.9 3114 17.7 

Montane Spruce (MS) 50.85 120.70 1438 2.8 1.8 649 22.0 

Ponderosa Pine (PP) 49.88 119.07 643 0.4 6.4 379 23.8 

Sub-Boreal Pine ─ Spruce (SBPS) 52.41 123.86 1152 2.3 1.7 472 22.8 

Sub-Boreal Spruce (SBS) 54.35 124.33 900 10.3 2.2 656 23.9 

Spruce ─ Willow ─Birch (SWB) 58.44 128.23 1293 8.0 -1.8 691 24.7 

*
MAT=mean annual temperature; MAP=Mean annual precipitation; CONT=continentality, the difference between mean warm month temperature 

and mean cold month temperature with increasing values and indicator of greater continentality.  
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Table 2   The 20 climate change scenarios selected from 133 IPCC Fourth Assessment scenarios 

available at the Pacific Climate Impact Consortium. Scenarios 1-10 were recommended by 

Murdock and Spittlehouse (2011) to represent the range of the variation among all the scenarios. 

Scenarios 11-20 were selected randomly to represent the distribution.  

 

Scenarios representing the range  
of future climates 

Randomly selected scenarios 

1. cccma_cgcm3_A2-run4 11. bccr_bcm20_A2-run1 
2. cccma_cgcm3_A2-run5 12. cccma_cgcm3_B1-run2 
3. csiro_mk30_B1-run1 13. cccma_cgcm3_B1-run5 
4. gfdl_cm21_A2-run1 14. mri_cgcm232a_A2-run1 
5. giss_eh_A1B-run3 15. mpi_echam5_A1B-run2 
6. mpi_echam5_B1-run1 16. ipsl_cm4_A1B-run1 
7. mri_cgcm232a_B1-run5 17. giss_eh_A1B-run2 
8. ncar_ccsm30_A1B-run5 18. gfdl_cm21_A1B-run1 
9. ukmo_hadcm3_B1-run1 19. miroc32_medres_A2-run2 
10. ukmo_HadGEM1_A1B-run1 20. miroc32_Hires_B1_run1 
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Table 3   Climate variables selected from a total of 76 tested for inclusion in the final Random 

Forest model and their importance values (Decrease in Gini values). Prec=precipitation, 

Tmax=maximum temperature, Tmin=minimum temperature, Tave=average temperature, 

sp=spring (March – May), sm=summer (June – August), at=autumn (September – November), 

wt=winter (December – February), Continentality (TD)=(mean warmest month temperature)-

(mean coldest month temperature), SHM=summer heat-moisture index, EMT=extreme minimum 

temperature and PAS=precipitation as snow.  

Climate 

variable 

Importance 

value 

Climate 

variable 

Importance 

value 

Climate 

variable 

Importance 

value 

Climate 

variable 

Importance 

value 

TD  7696 Tmax_sm 5608 Tmax10 5120 Tmax07 4561 

Prec10 7298 Prec_sp 5588 Prec11 5078 Tmin10 4513 

Tmin11 6219 Prec05 5550 Tmin_wt 5027 SHM 4513 

Prec06 6155 Prec09 5502 Prec01 4983 Tmax08 4458 

Prec12 5953 Prec_at 5478 Tmin02 4981 Tmin06 4321 

Tmax02 5901 Prec07 5379 Prec03 4978 Tmin05 4315 

Tmin_sm 5821 Tmax11 5347 Tave_sp 4942 Tmax09 4185 

Tmax_sp 5815 Prec_wt 5311 Tmax05 4779 Prec02 4178 

Prec08 5762 Tave_sm 5268 Tmax01 4760 EMT 4077 

Tmax_wt 5692 Tmax_at 5217 Tmin12 4746 Tmin01 3945 

Prec_sm 5611 Prec04 5193 Tmin_at 4682 PAS 3873 
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Table 4   Comparison of the current British Columbia Forest Service map of ecological zones 

with a map of climate envelopes predicted by Random Forest. Accuracy of the predicted map 

was measured by a pixel-by-pixel comparison of ecosystem zone classification on the Forest 

service map and the predicted map (i.e., mismatch rate) using an independent dataset at a higher 

resolution than that used in building the model. Degree to which the predicted map varies from 

the BC Forest Service map is described by changes to the following zone features: area, 

elevation, and northern position. 

 

Ecosystem 

zone  

 

Mismatch rate 

 (%) 

Difference between predicted and BC Forest 

Service ecosystem maps  

Area 

(%) 

Elevation 

(m) 

Northern position 

(km) 

BAFA 24 -11 27 19 

BG 16 -4 -8 -1 

BWBS 4 -1 -1 1 

CDF 5 -1 -2 -1 

CMA 32 -21 89 36 

CWH 10 -4 -25 1 

ESSF 10 6 4 6 

ICH 13 -2 -20 8 

IDF 8 -1 -3 1 

IMA 30 -8 21 1 

MH 21 42 32 -2 

MS 14 2 -4 0 

PP 16 2 -6 0 

SBPS 6 0 -3 1 

SBS 6 -1 -5 4 

SWB 16 0 0 4 

Note: Elevation and northern position were measured as averages of ecological zones within 

British Columbia. Positive values for area, elevation and northern position indicate expansion, 

upward and northern movement, respectively.  
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Table 5   Predicted shifts in climate envelopes for ecological zones for the current (2001-2009) and projected shifts based on the consensus 

among the 20 selected climate change scenarios listed in Table 2 and three future periods 2020s (2011-2040), 2050s (2041-2070) and 2080s 

(2071-2100) relative to the reference period (1961-1990). Loss indicates the percent decrease in area of a mapped zone due to pixels that now 

have or are projected in the future to have climates outside of the climatic envelop of that zone.  Gain indicates the percent increase in area of a 

zone due to pixels mapped in other zones that have climates that fall within the climatic envelope of the zone.  Zone abbreviations are shown in 

Table 1.  

Ecosystem 

zone 

 
       Loss/gain/change of climate habitat (%)  Elevation shift (m)  Northward shift (km) 

 
Current 2020s 2050s 2080s  Current 2020s 2050s 2080s  Current 2020s 2050s 2080s 

BAFA 
 

-31/13/-18 -48/1/-47 -66/2/-64 -81/0/-81 
 

21 80 119 170 
 

10 41 70 95 

BG 
 

-39/66/27 -38/57/19 -43/114/71 -49/117/128 
 

30 0 97 186 
 

12 4 14 14 

BWBS 
 

-8/7/-1 -3/16/13 -7/19/12 -10/21/11 
 

11 52 59 70 
 

2 2 12 18 

CDF 
 

-5/24/19 -15/14/-1 -19/16/-3 -22/41/19 
 

9 16 24 128 
 

5 -3 -6 10 

CMA 
 

-18/29/11 -29/13/-16 -44/18/-26 -60/15/-45 
 

15 90 143 208 
 

16 53 94 138 

CWH 
 

-5/13/8 -2/24/22 0/40/40 -2/71/69 
 

49 105 191 323 
 

7 18 36 69 

ESSF 
 

-21/27/6 -34/15/-19 -59/38/-21 -74/41/-33 
 

-15 103 119 123 
 

104 54 174 278 

ICH 
 

-20/51/31 -7/83/76 -6/206/200 -10/335/325 
 

63 144 212 260 
 

31 26 79 127 

IDF 
 

-11/77/66 -13/55/42 -22/100/78 -39/130/91 
 

52 89 86 72 
 

38 22 75 126 

IMA 
 

-49/31/-18 -54/2/-52 -76/2/-74 -81/0/-81 
 

-113 150 223 246 
 

162 7 28 38 

MH 
 

-23/30/7 -33/29/-4 -70/63/-7 -74/62/-12 
 

25 176 286 455 
 

54 28 55 75 

MS 
 

-59/32/-27 -64/20/-44 -90/15/-75 -96/8/-88 
 

89 142 251 312 
 

33 3 35 105 

PP 
 

-38/67/29 -25/86/61 -37/152/115 -41/252/211 
 

6 85 152 235 
 

25 16 34 77 

SBPS 
 

-55/35/-20 -67/22/-45 -86/15/-71 -93/8/-85 
 

61 116 178 190 
 

27 5 2 -2 

SBS 
 

-31/21/-10 -19/30/11 -52/37/-15 -80/36/-44 
 

21 47 101 154 
 

27 18 63 145 

SWB 
 

-46/11/-35 -36/23/-13 -71/22/-49 -88/14/-44 
 

46 129 159 212 
 

2 0 17 23 
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Fig. 1   Scatterplot of the changes in mean annual temperature and mean annual precipitation 

from the reference period (1970s) to 2050s, for 133 climate change scenarios available in the 

Pacific Climate Impact Consortium Regional Analysis Tool (http://www.pacificclimate.org). 

The 20 climate change scenarios used in the consensus analysis are shown as squares ( ). 

The scenario representing the mean expected change in climate and the five scenarios 

representing the range of climatic projections (see Fig. 6) are shown as circled squares ( ). 

Numbers beside the selected scenarios are consistent with the numbers in Table 1.  

 

http://www.pacificclimate.org/
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Fig. 2   Out-of-bag (OOB) error rates for Random Forest models for predicting ecological 

subzone-variants using only annual, seasonal, or monthly climate variables, or all climate 

variables together. 
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Fig. 3   A strategy for sampling the input dataset used to build the Random Forest model (a) and 

its effects on out-of-bag (OOB) error rate for ecosystem class (subzone-variant) of various 

sizes. The number of data points per ecosystem class indicates its relative size (b).  
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Fig. 4   Geographic distributions of ecological zones currently mapped (a), predicted (1961-1990) 

(b), and their projected climate envelopes for current (2001-2009) (c), 2020s (d), 2050s (e), 

and 2080s (f) based on consensus predictions with the best-model agreement among 20 

selected climate change scenarios.  
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Fig. 5   Distributions of Mountain Hemlock (MH) zone and predicted climate envelope for the 

Coastal Mountain-heather Alpine (CMA) zone for the reference period (1961-1990) 

superimposed onto a satellite image for a region of southern British Columbia (centered at 

Lat. 50°18' N and Long. 123°02' W).  The CMA zone occupies areas above the MH zone in 

a or predicted CMA zone plus the gaps between the predicted CMA and the MH zones in b. 

The gaps are mostly forested areas and predicted to be MH zones. 
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Fig. 6   Comparisons in pixel-by-pixel mismatch rates (%) between the current Forest Service 

ecosystem map and predicted maps of ecosystem climate habitats produced using different 

statistical approaches to modeling climate-ecosystem relationships: Random Forest (RF) and 

discriminant analysis (Discrim) (see Hamann and Wang 2006, for details of discriminant 

analysis). RF OOB= Random Forest model predictions using out-of-bag data points 

(independent predictions).   
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Fig. 7   Geographic distributions of model-agreement (consensus strength) among the 20 

projections of ecological zones based on the 20 selected climate change scenarios for a) 

2020s, b) 2050s and c) 2080s. Also shown are areas with unchanged ecosystem zone climate 

habitats for the same periods (d, e and f, respectively). 
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Fig. 8   Projected distributions of climate envelopes of British Columbia’s ecosystems for a 

climate change scenario of average magnitude (MIROC32_MEDRES A2-run2) and for five 

extreme climate change scenarios for the 2050s. Climate change scenarios are shown above 

each map and are listed in Table 2. The relative magnitude of climate change for each 

scenario is shown in Figure 1. 
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Fig. 9   Random Forest model projections of the geographic distribution of the frequency of 

occurrence (percent of crown cover) of Douglas-fir (Pseudotsuga menziesii) for currently 

observed, 2020s, 2050s and 2080s. The projections were based on consensus prediction of 

ecological zone climate habitats and the current extent of Douglas-fir in these zones. 
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Fig. 10   Number of Douglas-fir seedlings annually planted during 2000-2010 and potentially 

needed for projected climate envelopes for ecological zones in 2020s, 2050s and 2080s based on 

consensus projections using 20 climate change scenarios. Zones with the number of seedlings 

planted or needed less than 0.1 million are not shown in the figures. 


