The Lifetime Prevention Schedule

Establishing Priorities among Effective Clinical Prevention Services in British Columbia

2023 Addendum

Acknowledgments

This project was completed under the guidance of the Lifetime Prevention Schedule Expert Committee. Current committee members are:

- Andrea Godfreyson (Chair) Director, Injury & Clinical Prevention, Population and Public Health Division, BC Ministry of Health
- Lindsay Arscott Director, Primary Care Quality, Primary Care, BC Ministry of Health
- **Martin Dawes** Professor of Family Practice, Department of Family Practice, Faculty of Medicine, University of British Columbia
- **Brain Emerson** Deputy Provincial Health Officer, Office of the Provincial Health Officer
- **Tijana Fazlagic** Executive Director, PharmaCare Benefits Branch, Pharmaceutical Services, BC Ministry of Health
- **Yang Geng** (LPSEC Secretariat) Policy Analyst, Lifetime Prevention Schedule, Population and Public Health, BC Ministry of Health
- Hilary Ho Policy Analyst, Provincial & Specialized Services, Acute and Provincial Services Branch, Hospital & Provincial Health Services, BC Ministry of Health
- Zahra Hussein Provincial Lead, Primary Care, Child Health BC
- Heather Jackson Senior Director, Quality, Research & Integrative Care, Cardiac Services BC
- **Penny Liao-Lussier** Provincial Director, Primary Care & Prevention, Child Health BC
- Julie MacFarlane Provincial Lead, Screening Programs, Perinatal Services BC
- **Megan Oakey -** Provincial Manager, Injury Prevention, Population and Public Health, BC Centre for Disease Control
- **Pamela Parkinson -** Manager, Lifetime Prevention Schedule, Population and Public Health, BC Ministry of Health
- Jonathan Robinson Executive Director, Healthy Living and Health Promotion, Population and Public Health, BC Ministry of Health
- Manik Saini Director, Health Technology Assessment, Partnership and Innovation Division, BC Ministry of Health
- Nicholas Schnee Executive Director, Cardiac Services BC, Stroke Service BC and Provincial Specialized Programs and Clinical Policy
- **Rachel Yeung Thompson -** Director, Women's, Maternal and Early Childhood Health, Population and Public Health, BC Ministry of Health
- Jillian Hannah Policy Analyst, Laboratory Services, Pharmaceutical, Laboratory and Blood Services Division, BC Ministry of Health
- Stuart Peacock Head of Cancer Control, BC Cancer

Update completed by H. Krueger & Associates Inc.

Table of Contents

ACKNOWLEDGMENTS	2
TABLE OF CONTENTS	3
BACKGROUND	4
CLINICAL PREVENTION IN CHILDREN AND YOUTH	5
BEHAVIOURAL COUNSELLING INTERVENTIONS	5
Preventing Tobacco Use in Children and Youth	5
Canadian Task Force on Preventive Health Care Recommendations (2017)	
United States Preventive Services Task Force Recommendations (2020)	5
Other Approaches to Prevention	5
Use of E-Cigarettes	6
Best in the World	6
Modelling the Clinically Preventable Burden	7
Modelling Cost-Effectiveness	
Summary	
PREVENTIVE MEDICATION / DEVICES	
Fluoride Varnish for Dental Health in Children – Evidence Update	
Background	
United States Preventive Service Task Force Recommendations (2021)	
The Cochrane Oral Health Group (2013)	
Application of Fluoride Varnish in Children	
Definitions / Background	
Estimating the Prevalence of Dental Caries in Young Children	
Impact of Dental Caries on Quality of Life	
Effectiveness of Fluoride Varnish Application in Children	
Summary	

Establishing Priorities among Effective Clinical Prevention Services in British Columbia: 2023 Addendum

Background

Each year since 2014 the Lifetime Prevention Schedule Expert Committee (LPSEC) has published an updated detailed report.¹ Between 2009 and 2022, the Lifetime Prevention Schedule team has reviewed and modeled a total of 30 clinical prevention services (CPS). In 2018, all models produced to date received an update which included converting costs into 2017 Canadian dollars. In 2022, the LPSEC decided to complete another update of all models, including converting costs into 2022 Canadian dollars. Given the volume of models that needed to be updated, this task is being completed over a two-year cycle, namely, fiscal 2022/23 and 2023/24.

In addition to this work, in the 2022/23 fiscal year, the LPSEC completed a major model update for *Preventing Tobacco Use in Children and Youth* and completed a review of new evidence for *Fluoride Varnish to Prevent Dental Caries in Children*. The updated model is a revision of the original model which was done in 2014. It now includes considerations related to e-cigarettes given the notable increase in e-cigarette use among children and youth in recent years. This 2023 Addendum provides the results of the updated *Preventing Tobacco Use in Children and Youth*, with costs in 2022 Canadian dollars, as well as the findings of the review of new evidence for *Fluoride Varnish to Prevent Dental Caries in Children*, in particular new evidence regarding the effectiveness of fluoride varnish in treating dental caries. The Addendum does not include any of the other models that are currently being updated. A fully updated Technical Report with all models in 2022 Canadian dollars will be released in 2024.

¹ See <u>https://www2.gov.bc.ca/gov/content/health/about-bc-s-health-care-system/health-priorities/lifetime-prevention</u>. Accessed May 2023.

Clinical Prevention in Children and Youth

Behavioural Counselling Interventions

Preventing Tobacco Use in Children and Youth

Canadian Task Force on Preventive Health Care Recommendations (2017)

We recommend asking children and youth (age 5–18 yr.) or their parents about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to **prevent** tobacco smoking among children and youth (weak recommendation, low-quality evidence).

We recommend asking children and youth (age 5–18 yr.) or their parents about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to **treat** tobacco smoking among children and youth (weak recommendation, low-quality evidence).²

United States Preventive Services Task Force Recommendations (2020)

The USPSTF recommends that primary care clinicians provide interventions, including education or brief counseling, to **prevent** initiation of tobacco use among school-aged children and adolescents (ages 5-17 yr.) (B Recommendation)

The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of primary care–feasible interventions for the **cessation** of tobacco use among school-aged children and adolescents (ages 5-17 yr.) (I Recommendation)³

Other Approaches to Prevention

In the review of the evidence for the 2013 recommendation,⁴ the USPSTF noted that the 2012 Surgeon General's Report concluded that there is a "large, robust, and consistent" evidence base that documents known effective strategies for reducing tobacco use among youth and young adults.⁵ These strategies include coordinated, multi-component approaches that combine media campaigns, price increases, school-based policies and programs and community-wide changes in policies and norms. The purpose of the USPSTF review was not to reconsider the evidence covered by the Surgeon General's Report, but rather "to review the evidence for the efficacy and harms of **primary-care relevant interventions** (emphasis added) that aim to reduce tobacco use among children and adolescents."⁶

² Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of cigarette smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189 (8): E310-16.

³ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

⁴ Patnode CD, O'Connor E, Whitlock EP et al. Primary care-relevant interventions for tobacco use prevention and cessation in children and adolescents: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2013; 158(4): 253-60.

⁵ U.S. Department of Health and Human Services. *Preventing Tobacco Use Among Youth and Young Adults: A Report of the Surgeon General*. 2012. Available at

http://www.cdc.gov/tobacco/data_statistics/sgr/2012/consumer_booklet/pdfs/consumer.pdf. Accessed January 2014.

⁶ Patnode CD, O'Connor E, Whitlock EP et al. Primary care-relevant interventions for tobacco use prevention and cessation in children and adolescents: a systematic evidence review for the U.S. Preventive Services Task Force. *Annals of Internal Medicine*. 2013; 158(4): 253-60.

Use of E-Cigarettes

The 2017 CTFPHC report states that "this guideline does not address smokeless tobacco or ecigarettes".⁷ They note, however, that "the number of children and youth trying e-cigarettes is increasing, and one in five youth 15-19 years of age have tried them."⁸

The 2020 USPSTF report does include the use of e-cigarettes in its updated guidelines, noting that "although conventional cigarette use has gradually declined among children in the US since the late 1990s, tobacco use via electronic cigarettes (e-cigarettes) is quickly rising and is now more common among youth than cigarette smoking. E-cigarette products usually contain nicotine, which is addictive, raising concerns about e-cigarette use and nicotine addiction in children. Exposure to nicotine during adolescence can harm the developing brain, which may affect brain function and cognition, attention, and mood; thus, minimizing nicotine exposure from any tobacco product in youth is important."⁹

Furthermore, the 2020 USPSTF report notes that "most of the evidence on behavioral counseling interventions to prevent tobacco use focused on prevention of cigarette smoking. Given the similar contextual and cultural issues currently surrounding the use of e-cigarettes in youth and the inclusion of e-cigarettes as a tobacco product by the FDA, the USPSTF concludes that the evidence on interventions to prevent cigarette smoking could be applied to prevention of e-cigarette use as well. The USPSTF also concludes that the evidence could be applied to prevention of cigar use, which includes cigarillos and little cigars."¹⁰

Best in the World

- In Oregon, 87.4% of adolescents ages 10-17 who visited a primary care provider between January 1, 2016 and December 31, 2017 had their smoking status assessed.¹¹
- In Florida, 92.3% of adolescents ages 11-17 who visited a primary care provider between July 2016 and November 2017 were asked about their current cigarette smoking. Just over half (51.4%) were asked about their current use of smokeless tobacco but none were asked about their use of electronic nicotine delivery systems (ENDS).¹²
- In a national US sample of adolescents ages 12 to 17, 45.2% of those who screened positive for current cigarette smoking were advised by their clinician to quit smoking.¹³

⁷ Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of cigarette smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189 (8): E310-16.

⁸ Ibid.

⁹ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

¹⁰ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

¹¹ Bailey S, Fankhosuer K, Marino M et al. Smoking assessment and current smoking status among adolescents in primary care. *Nicotine & Tobacco Research*. 2020; 22(11): 2098-2103.

¹² LeLaurin J, Theis R, Thompson L et al. Tobacco-related counselling and documentation in adolescent primary care practice: Challenges and opportunities. *Nicotine & Tobacco Research*. 2020; 22(6): 1023-9.

¹³ Merianos A, Mahabee-Gittens E. Screening, counselling, and health care utilization among a national sample of adolescent smokers. *Clinical Paediatrics*. 2020; 59(4-5): 467-75.

- In a survey of 1,050 US pediatric care providers conducted in 2021, 69.4% indicated they screen patients for e-cigarette use, 63.8% counsel e-cigarette prevention and 67% counsel e-cigarette cessation.¹⁴
- Matheus and colleagues managed to improve screening rates for e-cigarette use from 23% to 89% of 300 adolescents with a health maintenance or sports physical visit between October 2019 and February 2020 in the US.¹⁵
- For modelling purposes, we have assumed that the best rate in the world for cigarette / e-cigarette screening of children / youth is 92%¹⁶ and 89%¹⁷ of those with a primary health care visit in a given year. Furthermore, 45%¹⁸ and 67%¹⁹ of those found positive for cigarette / e-cigarette use receive counselling to quit.

Modelling the Clinically Preventable Burden

In this section, we model CPB associated with asking children and youth or their parents about tobacco use / e-cigarette use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to prevent and / or treat tobacco smoking and e-cigarette use among children and youth.

Definitions

 "Tobacco products include any product made or derived from tobacco intended for human consumption (except products that meet the definition of drugs), including, but not limited to, cigarettes, cigars (including cigarillos and little cigars), dissolvable tobacco, hookah tobacco, nicotine gels, pipe tobacco, roll-your-own tobacco, smokeless tobacco products (including dip, snuff, snus, and chewing tobacco), vapes, e-cigarettes, hookah pens, and other electronic nicotine delivery systems. 'Smoking' generally refers to the inhaling and exhaling of smoke produced by combustible tobacco products such as cigarettes, cigars, and pipes. 'Vaping' refers to the inhaling and exhaling of aerosols produced by e-cigarettes.''²⁰

Defining and Estimating the Population at Risk

• "All youth are considered at risk of initiating tobacco use. Interventions to prevent the initiation of tobacco use should be provided to all youth who have not started using tobacco products yet, regardless of the presence or absence of other risk factors. The following risk factors may increase the risk of tobacco use in youth: being male, white race, not college-bound, from a rural area, having parents with lower levels of education, parental smoking, having childhood friends who smoke, being an older

¹⁴ Golden T, VanFrank B, Courtney-Long E. E-cigarette screening and clinical intervention behaviours among pediatric primary care providers, DocStyles 2021. *Paediatrics*. 2022; 149: 740.

¹⁵ Matheus C, Hein N, Narahari P et al. Improving standardized screening for e-cigarette and vaping use among adolescents. *Paediatrics*. 2021; 147 (3-Meeting Abstract): 1002.

¹⁶ LeLaurin J, Theis R, Thompson L et al. Tobacco-related counselling and documentation in adolescent primary care practice: Challenges and opportunities. *Nicotine & Tobacco Research*. 2020; 22(6): 1023-9.

¹⁷ Matheus C, Hein N, Narahari P et al. Improving standardized screening for e-cigarette and vaping use among adolescents. *Paediatrics*. 2021; 147 (3-Meeting Abstract): 1002.

¹⁸ Merianos A, Mahabee-Gittens E. Screening, counselling, and health care utilization among a national sample of adolescent smokers. *Clinical Paediatrics*. 2020; 59(4-5): 467-75.

¹⁹ Golden T, VanFrank B, Courtney-Long E. E-cigarette screening and clinical intervention behaviours among pediatric primary care providers, DocStyles 2021. *Paediatrics*. 2022; 149: 740.

²⁰ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

adolescent, experiencing highly stressful events, and perceiving tobacco use as low risk."²¹

 Based on data from the 2018/19 Canadian Student Tobacco, Alcohol and Drugs Survey (CSTADS), just 0.80% of BC adolescents in grades 7-9 and 4.40% of BC adolescents in grades 10-12 were current smokers. Current smokers include occasional (smoked at least one cigarette during the past 30 days, but has not smoked every day) and daily (smoke at least one cigarette per day for each of the 30 days preceding the survey) smokers (see Table 1).²²

Table 1: Cigarette Smoking in British ColumbiaAdolescents in Grades 7 to 12In 2018/19															
		Current	Current												
Current Daily Occasional															
Grade	Grade Smoker Smoker Smoker														
Grades 7-9															
Male	0.88%	0.40%	0.48%												
Female	0.72%	0.32%	0.40%												
Combined	0.80%	0.36%	0.44%												
Grades 10-12															
Male	5.26%	1.53%	3.73%												
Female	3.35%	0.96%	2.39%												
Combined	Combined 4.40% 1.24% 3.16%														
Extrapolated base	ed on data f	or Canada													

 Across Canada, the proportion of adolescent current smokers ages 12-17 has declined from 4.1% in 2015 to 1.1% in 2021 (see Table 2).²³

Table 2	Table 2: Trend in the Proportion of Daily or Occasional														
	Smokers in Canada														
Ages 12 - 17															
2015 to 2021															
Sex	2015	2016	2017	2018	2019	2020	2021								
Males	4.3%	3.9%	2.7%	3.3%	2.5%	2.3%	1.3%								
Females	4.0%	3.3%	4.3%	3.0%	2.5%	1.3%	1.0%								
Total _	4.1%	3.6%	3.5%	3.2%	2.5%	1.8%	1.1%								

²¹ US Preventive Service Task Force. Primary care interventions for prevention and cessation of tobacco use in children and adolescents: US Preventive Services Task Force recommendation statement. *JAMA*. 2020; 323(16): 1590-98.

²² Canadian Student Tobacco, Alcohol and Drugs Survey 2018-2019, Table 3. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-student-tobacco-alcohol-drugs-survey/2018-2019-</u>detailed-tables.html#t3. Accessed September 2022.

²³ Statistics Canada, *Smokers by Age Group*. Available online at

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310009610&pickMembers%5B0%5D=1.1&pickMembers%5B1%5D=3.1&cubeTimeFrame.startYear=2015&cubeTimeFrame.endYear=2021&referencePeriods=20150101 %2C20210101. Accessed September 2022.

- In 2018 in BC among the 19% of children / youth aged 12-19 who had ever smoked tobacco, the age they first tried smoking was as follows:²⁴
 - \circ Less than 9 Years old 5%
 - 9 − 2%
 - 10 − 3%
 - o 11−3%
 - 0 12 8%
 - o 13 14%
 - o 14 19%
 - o 15 20%
 - $\circ 16 17\%$
 - \circ 17 or older 10%
- While cigarette smoking among adolescents has decreased, use of e-cigarettes has increased dramatically. In Ontario, for example, the rate of e-cigarette use in male adolescents increased almost 3-fold during the six year period between 2013/14 and 2018/19. In female adolescents, the rate of increase during that time was even higher, at greater than 4-fold (see Figure 1).²⁵

²⁴ Smith A, Peled M, Poon C et al. Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey. 2020. Vancouver, BC: McCreary Centre Society.

²⁵ Cole A, Aleyan S, Battista K et al. Trends in youth e-cigarette and cigarette use between 2013 and 2019: Insights from repeat cross-sectional data from the COMPASS study. *Canadian Journal of Public Health*. 2021; 112: 60-69.

• In BC, the proportion of adolescents in grades 10-12 who had ever tried e-cigarettes increased from 34.3% in 2016/17 to 56.6% in 2018/19. Daily or almost daily use increased even more dramatically in the cohort, from 2.5% in 2016/17 to 11.6% in 2018/19 (see Table 3).²⁶

Table	Table 3: Use of E-Cigarettes in British Columbia														
	Adolescents in Grades 7 - 12														
		L	In 2018/19												
			Daily or			Daily or									
	Ever	Past 30-	Almost	Ever	Past 30-	Almost									
	Tried	Tried	Day Use	Daily Use											
Grades 7-9															
Male	13.1%	6.4%	1.1%	23.9%	15.0%	2.7%									
Female	10.9%	5.9%	0.3%	26.1%	15.8%	2.2%									
Combined	12.0%	6.1%	0.7%	25.0%	15.4%	2.5%									
Grades 10-12															
Male	38.6%	23.4%	4.0%	56.9%	40.3%	13.9%									
Female	29.9%	12.6%	1.0%	56.4%	36.7%	9.3%									
Combined	34.3%	18.1%	2.5%	56.6%	38.5%	11.6%									

- In BC, 29% of children / youth ages 12-19 used at least one nicotine-related product in the month prior to completing the 2018 BC Adolescent Health Survey. The proportion of youth that used each product was as follows:²⁷
 - \circ Vape pen/stick 27%
 - Cigarettes 7%
 - Cigars/cigarillos 3%
 - \circ Chewing tobacco 2%
 - \circ A hookah 2%

²⁶ Data for 2016/17 is from the Canadian Student Tobacco, Alcohol and Drugs Survey 2016-2017, Tables 5 & 6. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-student-tobacco-alcohol-drugs-</u>survey/2016-2017-supplementary-tables.html#t6.

Data for 2018/19 is from the Canadian Student Tobacco, Alcohol and Drugs Survey 2018-2019, Tables 5 & 6. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-student-tobacco-alcohol-drugs-survey/2018-2019-detailed-tables.html#t3</u>.

Accessed September 2022.

²⁷ Smith A, Peled M, Poon C et al. Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey. 2020. Vancouver, BC: McCreary Centre Society.

• Not only are more adolescents using e-cigarettes but the intensity of use is also increasing.²⁸ Of US high school students who used e-cigarettes in 2019, 34.2% used them at least 20 out of the past 30 days (see Table 4).²⁹

Table 4: Frequency During the Among US Hig By Pro	of Tobac Past 30 (h School 9 oduct, 2019	co Produ Days Students	uct Use											
Days of Use														
1-5 6-19 20-30														
E-cigarettes	46.4%	19.4%	34.2%											
Cigars	68.6%	14.1%	17.3%											
Cigarettes	51.5%	16.0%	32.5%											
Smokeless tobacco	44.0%	18.0%	37.9%											
Hookahs	69.2%	13.2%	17.6%											

• Among US youth, the initiation of e-cigarette use, in particular "fairly regular use", tends to peak at ages 17-18 (see Table 5).³⁰

Table	5: Cum Who By Age a	ulative P nitiate e nd e-Cigar During 20	roportio -Cigaret ⁻ rette Use 13 to 2017	n of US Youth te Use Outcome										
Fairly														
Past 30- Regular														
	Age	Ever Use	Day Use	Use *										
	13	3.0%	0.8%	0.45%										
	14	6.6%	2.3%	1.0%										
	15	11.7%	4.4%	2.2%										
	16	18.6%	7.4%	3.8%										
	17	30.4%	13.1%	6.6%										
	18	41.7%	23.5%	10.3%										
* Based of products f	n the questic airly regulari	on "Have you e ly?"	ver used elec	tronic nicotine										

²⁹ Wang T, Gentzke A, Creamer M et al. Tobacco product use and associated factors among middle and high school students – United States, 2019. *Morbidity and Mortality Weekly Report*. December 6, 2019; 68(12): 1-22.
³⁰ Perez A, Bluestein M, Chen B et al. Prospectively estimating the age of initiation of e-cigarettes among U.S.

youth: Finding from the Population Assessment of Tobacco and Health (PATH) study, 2013-2017. *Journal of Journal of Biometrics and Biostatistics*. 2020; Volume 11(3): DOI: 10.37421/jbmbs.2020.11.44211

²⁸ Glantz S, Jeffers A, Winickoff J. Nicotine addiction and intensity of e-cigarette use by adolescents in the US, 2014 to 2021. *JAMA Network Open.* 2022; 5(11): e2240671.

• Based on data from the 2019 Canadian Tobacco and Nicotine Survey,³¹ the proportion of current smokers across Canada increased from 5.1% for those ages 15-19 to 13.3% for those ages 20-24, stabilizing at 13.3% between the ages of 25-45 and then declining modestly to 12.0% for those over the age of 45 (see Table 6). The proportion of the population reporting vaping during the past 30 days remained fairly constant between the ages of 15-24, dropping significantly thereafter (see Table 6).

Table 6: Smoking and Vaping Status															
		By Age G	iroup and	Sex											
		Can	ada, 2019												
	Age	Current	Former	Never											
Sex	Group	Smoker	Smoker	Smoker	Vaping*										
Male	2														
	15-19	6.0%	NA	92.6%	16.1%										
	20-24 15.3% 8.6% 76.0% 18.0%														
	25-44 13.7% 30.0% 69.4% 6.7%														
4	45+ 12.9% 38.1% 49.0% 1.9%														
-	Total 12.7% 26.0% 61.4% 5.8%														
Fem	Female														
, -	15-19	NA	NA	95.0%	13.6%										
	20-24	10.6%	NA	88.0%	11.8%										
	25-44	12.8%	17.3%	69.9%	3.3%										
4	45+	11.3%	32.2%	56.6%	1.3%										
-	Total	11.1%	23.0%	65.9%	3.6%										
Tota	ıl														
	15-19	5.1%	NA	93.4%	15.1%										
2	20-24	13.3%	5.2%	81.5%	15.2%										
	25-44	13.3%	17.1%	17.1%	5.0%										
4	45+	12.0%	35.1%	35.1%	1.6%										
-	Total	11.9%	24.5%	63.7%	4.7%										
Notes	: NA = not	available; * F	Past 30-day	use											

³¹ Health Canada. *Canadian Tobacco and Nicotine Survey: 2019 Detailed Tables*. Available online at <u>https://www.canada.ca/en/health-canada/services/canadian-tobacco-nicotine-survey/2019-summary/2019-detailed-tables.html#t1</u>. Accessed September 2022.

E-Cigarette Use and Subsequent Cigarette Smoking

- Only a minority of adolescents (7.8%)³² or young adults (12.8%)³³ who use ecigarettes report using them for the purpose of smoking cessation.
- Among baseline adolescent never smokers, e-cigarette users have a much higher odds of subsequent infrequent (OR=4.27, 95% CI 2.75 6.62) or frequent (OR=3.51, 95% CI 1.97 6.24) cigarette use than never smokers who do not use e-cigarettes.³⁴
- The probability of cigarette smoking initiation by an adolescent **ever** e-cigarette user is 30.4% vs. 7.9% by an adolescent **never** e-cigarette user, an odds ratio of 3.62 (95% CI of 2.42 to 5.41).³⁵
- Soneji and co-authors suggest three possible reasons for this high level of cigarette smoking initiation by an adolescent ever e-cigarette user. First, e-cigarette use mimics the behavioral scripts of cigarette smoking. Second, adolescents and young adults who use nicotine-containing e-cigarettes may become addicted to nicotine because e-cigarette aerosol contains highly oxidizing free-base nicotine the most addictive form of nicotine that is easily absorbed by the body. And third, e-cigarette use may activate cognitive or behavioral processes that increase the risk of smoking.³⁶

Harms Associated with E-Cigarette Use in Children and Youth

In addition to a higher risk of converting to conventional cigarette use, e-cigarette use in children and youth is also associated with a number of other harms.

- In a longitudinal study of 17,073 children with an average initial age of 9.9 years, ever-use of tobacco products, including e-cigarettes, was associated with inferior cognitive performance and reduced brain structure with sustained effects for at least two years.³⁷
- Based on data from the 2016/17 US Behavioral Risk Factor Surveillance System, Obisesan and colleagues found that former e-cigarette users had a 1.60-fold (95% CI, 1.54-1.67) higher odds of reporting a history of clinical diagnosis of depression than never users, whereas current e-cigarette users had 2.10 (95% CI, 1.98-2.23) times higher odds. Additionally, higher odds of reporting depression were observed with increased frequency of use among current e-cigarette users compared with never

³² Tsai J, Walton K, Coleman B et al. Reasons for electronic cigarette use among middle and high school students – National Youth Tobacco Survey, United States, 2016. *Morbidity and Mortality Weekly Report*. 2018; 67(6): 196-200.

 ³³ Hong H, Liu F, Urman R et al. Reasons for electronic cigarette use among South California young adults. In: *Proceedings of the American Thoracic Society International Conference*; May 19-24, 2017; Washington DC.
³⁴ Barrington-Trimis J, Komg G, Leventhal A et al. E-cigarette use and subsequent smoking frequency among adolescents. *Paediatrics*. 2018; 142(6): e20180486.

³⁵ Soneji S, Barrington-Trimis J, Wills T et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: A systematic review and meta-analysis. *JAMA Paediatrics*. 2017; 171(8):788-97.

³⁶ Soneji S, Barrington-Trimis J, Wills T et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: A systematic review and meta-analysis. *JAMA Paediatrics*. 2017; 171(8):788-97.

³⁷ Dai H, Doucet G, Wang Y et al. Longitudinal assessments of neurocognitive performance and brain structure associated with initiation of tobacco use in children, 2016 to 2021. *JAMA Network Open*. 2022; 5(8): e2225991.

users (**daily use**: OR, 2.39; 95% CI, 2.19-2.61; **occasional use**: OR, 1.96; 95% CI, 1.82-2.10).³⁸

- Based on a study of 2,299 high school seniors, McCabe et al found that among users of e-cigarettes, lifetime cigarette smoking, alcohol use, marijuana use, nonmedical prescription drug use and illicit drug use (e.g., cocaine, LSD, heroin) are much higher compared with non-users of e-cigarettes. In particular, early onset of e-cigarette use (by grade 9 or earlier) was associated with an increased odds ratio of 14.2 for lifetime cigarette smoking, 70.6 for lifetime alcohol use, 16.4 for lifetime marijuana use, 9.5 for lifetime nonmedical prescription drug use and 19.2 for lifetime illicit drug use.³⁹
- In their 2020 review of the available literature on the cardiovascular risk of ecigarettes, Buchman and colleagues conclude that "there is growing evidence that ecigarettes and their aerosol constituents, nicotine, carbonyl compounds, particulate matter, metals, and flavourings, can have adverse effects on the cardiovascular system" and furthermore "while there is a paucity of data, recent studies have also suggested that e-cigarette use is associated with inflammation, oxidative stress, and haemodynamic imbalance leading to increased cardiovascular diseases risk."⁴⁰
- Dual use (combining the use of conventional cigarettes and e-cigarettes) may increase cardiovascular risk when compared with those who use only conventional cigarettes.⁴¹
- Based on a review of current evidence on the respiratory effects of e-cigarettes, Miyashita and Foley conclude that "e-cigarette exposure can disrupt pulmonary homeostasis, with reports of gas exchange disturbance, reduced lung function, increased airway inflammation and oxidative stress, downregulation of immunity, and increased risk of respiratory infection."⁴²
- Based on a systematic review of the available literature on e-cigarette use and oral health, Yang and colleagues found that "the majority of mouth and throat symptoms experienced by e-cigarette users were relatively minor and temporary, with some evidence that conventional smokers who switched to e-cigarettes experienced mitigation of these symptoms. E-cigarette exposure increased the risk for deteriorating periodontal, dental and gingival health as well as changes to the oral microbiome. Extensive dental damage as a result of e-cigarette explosions were described in case reports."⁴³
- Based on a systematic review of the available literature, Bjurlina et al found that "biomarkers of carcinogens, several with a strong link to bladder cancer, are present in the urine of e-cigarette users. Long-term implications of urothelial exposure to

³⁸ Obisesan O, Mirbolouk M, Osei A et al. Association between e-cigarette use and depression in the Behavioral Risk Factor Surveillance System, 2016-2017. *JAMA: Public Health.* 2019; 2(12): e1916800. doi:10.1001/iamanetworkopen.2019.16800.

 ³⁹ McCabe S, West B, McCabe V. Associations between early onset of e-cigarette use and cigarette smoking and other substance use among US adolescents: A national study. *Nicotine & Tobacco Research*. 2018; 923-30.
⁴⁰ Buchanan N, Grimmer J, Tanwar V et al. Cardiovascular risk of electronic cigarettes: A review of preclinical and clinical studies. *Cardiovascular Research*. 2020; 116: 40-50.

⁴¹ Kim C, Paek Y, Seo H et al. Dual use of electronic and conventional cigarettes is associated with higher cardiovascular risk factors in Korean men. *Scientific Reports*. 2020; 10: 5612.

⁴² Miyashital, Foley G. E-cigarettes and respiratory health: the latest evidence. *British Medical Journal*. 2019; 366: 5027-38.

⁴³ Yang I, Sandeep S, Rodriguez J. The oral health impact of electronic cigarette use: a systematic review. *Critical Reviews in Toxicology*. 2020; 50(2): 97-127.

these toxicants are unknown but concerning, given the similarities to tobacco smoke and its established relationship with bladder cancer."⁴⁴

• Other potential harms include unintentional injuries due to device malfunctions, ingesting e-liquids by young children, nicotine toxicity and withdrawal symptoms.⁴⁵

Estimating the Prevalence of Cigarette Smoking and E-Cigarette Use - No Intervention

- In estimating the number of current female and male adolescent **cigarette smokers** in a BC birth cohort of 40,000 we began with the assumption that 3.35% of females and 5.26% of males in grade 11 were current cigarette smokers (see Table 1). Furthermore, an additional 10%⁴⁶ of adolescents would take up cigarette smoking in grade 12 (age 17) for a total of 3.68% of females and 5.79% of males by the end of their 17th year (see Table 7). The % and number of cigarette smokers prior to age 17 is based on the age that BC youth first tried smoking (see Table 7).⁴⁷
- In estimating the number of female and male adolescent **e-cigarette users** in a BC birth cohort of 40,000 we began with the assumption that 15.8% of females aged 13 (Grade 8) used e-cigarettes in the past 30 days and 2.2% were daily or almost daily users. The equivalent % for males aged 13 is 15.0% and 2.7% (see Table 3). By age 17 (Grade 11) 36.7% / 40.3% of females / males used e-cigarettes in the past 30 days and 9.3% / 13.9% of females / males were daily or almost daily users (see Table 3).
- A significant number of adolescents start e-cigarette use in their 18th year (see Table 5). This increase is reflected in the % and number of e-cigarette users by the end of their 18th year in Table 7.
- Hammond et al estimated that 41.9% of youth in Canada (in 2019) who smoke also vape.⁴⁸
- We assumed that 22.5% of 18 year olds with past 30 day e-cigarette use **who did not smoke** would convert to cigarette smoking by age 24, based on the probability of cigarette smoking initiation by an adolescent **ever** e-cigarette user of 30.4% vs. 7.9% by an adolescent **never** e-cigarette user.⁴⁹ The uptake of cigarette smoking by this cohort between the ages of 18 and 24 was assumed to be linear (see Table 7).
- Of exclusive experimental e-cigarette users (past 30 day use but not regular users) at age 18, 10.6% who did not transition to conventional cigarette use would remain exclusive e-cigarette users by age 24. Of exclusive established e-cigarette users

⁴⁴ Bjurlina M, Matulewicz R, Roberts T et al. Carcinogen biomarkers in the urine of electronic cigarette users and implications for the development of bladder cancer: A systematic review. *European Urology Oncology*. 2021; 5(4): 766-783.

⁴⁵ Chadi N, Vyver E, Belanger R. Protecting children and adolescents against the risks of vaping. *Paediatrics and Child Health*. 2021; 351-65.

⁴⁶ Smith A, Peled M, Poon C et al. Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey. 2020. Vancouver, BC: McCreary Centre Society.

⁴⁷ Smith A, Peled M, Poon C et al. *Understanding Tobacco Use and Vaping among BC Youth: Findings from the BC Adolescent Health Survey.* 2020. Vancouver, BC: McCreary Centre Society.

⁴⁸ Hammond D, reid J, Rynard V et al. Indicators of dependence and efforts to quit vaping among youth in Canada, England and the USA. *Tobacco Control*. 2022; 31: e25-e34.

⁴⁹ Soneji S, Barrington-Trimis J, Wills T et al. Association between initial use of e-cigarettes and subsequent cigarette smoking among adolescents and young adults: A systematic review and meta-analysis. *JAMA Paediatrics*. 2017; 171(8):788-97.

(regular use) at age 18, 62.2% who did not transition to conventional cigarette use would remain exclusive e-cigarette users by age 24 (see Table 7).⁵⁰

• Based on these assumptions, 5,414 (13.7%) in the BC birth cohort would be current smokers by age 24 (2,627 females [13.2%] and 2,788 males [14.1%]) while a further 5,571 (14.5%) would continue to use e-cigarettes at age 24 (2,527 females [12.7%] and 3,224 males [16.3%]) (see Table 7).

	Table 7: Estimated Prevalence of Cigarette Smoking and E-cigarette Use																				
								Betwe	en th	e Age	s of 8	and 2	4								
							ln a	British	Colum	bia Birt	h Coho	ort of 4	0,00)							
						With	iout a C	Child / Yo	uth Scr	eening	Prograr	n / Brie	fInter	ventio	n						
				Female						1	Nale	, -			Total Population						
					e-Ciga	rette						e-Cigar	ette					-	e-Cigar	ette	
				Past 30-	day Use				Past 30-day Use									Past 30-	day Use		
		Cigar	rette	Excl Reg	ular Use	Regula	r Use		Cigar	rette	Excl Reg	ular Use	Regul	ar Use		Cigar	ette	Excl Reg	ular Use	Regula	ar Use
Age	N	%	#	%	#	%	#	N	%	#	%	#	%	#	N	%	#	%	#	%	#
8	19,918	0.15%	29					19,907	0.23%	46					39,824	0.19%	75				
9	19,917	0.22%	44					19,906	0.35%	69					39,822	0.28%	113				
10	19,915	0.33%	66					19,904	0.52%	104					39,820	0.43%	170				
11	19,914	0.44%	88					19,903	0.69%	138					39,817	0.57%	226				
12	19,913	0.74%	147					19,902	1.16%	230					39,815	0.95%	377				
13	19,911	1.25%	249	13.6%	2,708	2.2%	438	19,900	1.97%	391	12.3%	2,448	2.7%	537	39,812	1.6%	641	13.0%	5,156	2.4%	975
14	19,910	1.95%	388	17.0%	3,394	4.0%	791	19,898	3.07%	610	15.8%	3,149	5.5%	1,094	39,808	2.5%	999	16.4%	6,543	4.7%	1,886
15	19,907	2.69%	535	20.5%	4,081	5.7%	1,145	19,896	4.22%	840	19.3%	3,850	8.3%	1,651	39,803	3.5%	1,375	19.9%	7,930	7.0%	2,796
16	19,904	3.31%	660	24.0%	4,767	7.5%	1,498	19,891	5.21%	1,036	22.9%	4,550	11.1%	2,208	39,795	4.3%	1,696	23.4%	9,318	9.3%	3,706
1/	19,900	3.68%	/33	27.4%	5,454	9.3%	1,851	19,885	5.79%	1,151	26.4%	5,251	13.9%	2,765	39,784	4.7%	1,884	26.9%	10,705	11.6%	4,616
18	19,894	5.04%	1,004	34.6%	6,893	14.5%	2,888	19,876	6.97%	1,385	25.7%	5,104	21.7%	4,313	39,770	6.0%	2,388	30.2%	11,997	18.1%	7,202
19	19,888	6.41%	1,274	29.5%	5,866	13.6%	2,706	19,864	8.15%	1,619	21.9%	4,343	20.3%	4,042	39,752	7.3%	2,893	25.7%	10,209	17.0%	6,748
20	19,881	7.77%	1,545	24.3%	4,839	12.7%	2,524	19,851	9.33%	1,852	18.0%	3,583	19.0%	3,770	39,732	8.5%	3,397	21.2%	8,422	15.8%	6,294
21	19,8/4	9.13%	1,815	19.2%	3,812	11.8%	2,342	19,835	10.52%	2,086	14.2%	2,822	17.6%	3,498	39,709	9.8%	3,901	16.7%	6,634	14.7%	5,841
22	19,867	10.50%	2,086	14.0%	2,785	10.9%	2,160	19,817	11./1%	2,320	10.4%	2,062	10.3%	3,226	39,684	11.1%	4,406	12.2%	4,847	13.6%	5,38/
23	19,859	11.86%	2,356	8.9%	1,758	10.0%	1,978	19,796	12.90%	2,554	0.0%	1,301	14.9%	2,955	39,656	12.4%	4,910	7.7%	3,059	12.4%	4,933
24	19,851	13.23%	2,627	3.7%	/31	9.0%	1,796	19,775	14.10%	2,788	2.7%	541	13.6%	2,683	39,626	13.7%	5,414	3.2%	1,2/2	11.3%	4,479

⁵⁰ Wei L, Muhammad-Kah R, Hannel T et al. The impact of cigarette and e-cigarette use history on transition patterns: A longitudinal analysis of the population assessment of tobacco and health (PATH) study, 2013 – 2015. *Harm Reduction Journal*. 2020; 17(45).

• Figure 2 provides a visual representation of the modelled transitions between conventional and e-cigarette use between the ages of 13 and 24 in the *absence* of a child and youth screening program and brief intervention.

Estimating the Number of Deaths and Life Years Lost Attributable to Cigarette Smoking - No Intervention

- We assumed that 53.7% of females and 51.6% of males would be light smokers (less than 10 cigarettes per day), 32.4% / 26.1% would be moderate smokers (10-19 cigarettes per day) and 13.9% / 22.4% would be heavy smokers (≥ 20 cigarettes per day).⁵¹
 - Of the 2,627 female cigarette smokers at age 24, 1,411 would be light smokers, 851 would be moderate smokers and 365 would be heavy smokers
 - Of the 2,788 male cigarette smokers at age 24, 1,437 would be light smokers, 727 would be moderate smokers and 623 would be heavy smokers

⁵¹ H. Krueger & Associates Inc. *The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption.* 2017. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program.

- On average, tobacco smoking is associated with 10 life years lost,⁵² with 6.6, 11.9 and 18.1 life years lost associated with light, moderate and heavy smoking.⁵³
 - Total life years lost in the 2,627 female cigarette smokers at age 24 is expected to be 26,403 ((1,411 * 6.6) + (851*11.9) + (365*18.1)).
 - Total life years lost in the 2,788 male cigarette smokers at age 24 is expected to be 29,421 ((1,437 * 6.6) + (727*11.9) + (623*18.1)).
- Based on data between 1990 to 2011 in the US, Lariscy and colleagues found an elevated relative risk ratio for all-cause mortality among current smokers by smoking intensity as follows:⁵⁴
 - \circ < 10 cigarettes 1.78
 - 10-19 cigarettes 2.04
 - 20-39 cigarettes 2.47
 - $\circ \geq 40$ cigarettes -3.23
- Data from the Lariscy et al study was used to estimate the distribution of excess deaths attributable to cigarette smoking by age and sex (see Table 8).⁵⁵

Table 8 Deaths /	Table 8: Distribution of ExcessDeaths Attributable to Smoking														
By Age and Sex															
Age Female Male Total															
35-44	2.1%	2.7%	2.5%												
45-54	10.6%	13.3%	12.3%												
55-64	25.3%	30.5%	28.5%												
65-74	31.1%	33.8%	32.8%												
75-84	25.6%	16.9%	20.2%												
85+	5.3%	2.8%	3.8%												
Total	100%	100%	100%												

⁵² Banks E, Joshy G, Weber M et al. Tobacco smoking and all-cause mortality in a large Australian cohort study: findings from a mature epidemic with current low smoking prevalence. *BioMed Central Medicine*. 2015; 13(1): 38-48.

⁵³ In BC in 2015, 56% of tobacco smokers were light smokers, 28% were moderate smokers and 17% were heavy smokers. The estimated annual economic burden attributable to premature mortality in 2015 is \$1,346 (\$891 for light, \$1,607 for moderate and \$2,439 for heavy smokers). H. Krueger & Associates Inc. *The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption.* 2017. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program. We used this data to estimate life years lost by smoking intensity as follows: \$891 / \$1,346 * 10 life years lost = 6.6 life years lost for light smokers; \$1,607 / \$1,346 * 10 life years lost = 11.9 life years lost for moderate smokers; \$2,439 / \$1,346 * 10 life years lost = 18.1 life years lost for heavy smokers.

⁵⁴ Lariscy J, Hummer R, Rogers R. Cigarette smoking and all-cause and cause-specific adult mortality in the United States. *Demography*. 2018; 55(5): 1855-85.

⁵⁵ Lariscy J, Hummer R, Rogers R. Cigarette smoking and all-cause and cause-specific adult mortality in the United States. *Demography*. 2018; 55(5): 1855-85.

• Data from the previous two bullet points was then combined to estimate the distribution of excess deaths by age, sex and smoking intensity (see Table 9).

Tab	Table 9: Distribution of Excess Deaths Attributable to Smoking														
		Ву	Age, Sex	and Sm	oking Int	ensity									
		Fema	les	Males											
	Sm	oking Intens	sity	Sm	oking Intens	sity									
Age	Light	Moderate	Heavy	Total	Light	Moderate	Heavy	Total							
35-44	0.6%	0.7%	0.8%	2.1%	0.8%	0.9%	1.0%	2.7%							
45-54	3.0%	3.4%	4.2%	10.6%	3.8%	4.3%	5.2%	13.3%							
55-64	7.2%	8.2%	9.9%	25.3%	8.6%	9.9%	12.0%	30.5%							
65-74	8.8%	10.1%	12.2%	31.1%	9.6%	11.0%	13.3%	33.8%							
75-84	7.2%	8.3%	10.0%	25.6%	4.8%	5.5%	6.6%	16.9%							
85+	1.5%	1.7%	2.1%	5.3%	0.8%	0.9%	1.1%	2.8%							
Total _	28.3%	32.4%	39.3%	100%	28.3%	32.4%	39.3%	100%							

• Lariscy et al calculated that 18% of female deaths and 26% of male deaths ages 35+ in the US between 1990 and 2011 were attributable to tobacco smoking.⁵⁶

- For modelling purposes we assumed no smoking-attributable deaths in the cohort until age 36. We then distributed smoking-attributable deaths in the cohort by age, sex and smoking intensity (as per Table 9) and then adjusted the results so that total life years lost in the female cohort of smokers would be 27,730 and in males it would be 34,518 (see above). After this adjustment, our model indicated that 25.8% of female deaths and 23.6% of male deaths in the cohort between the ages of 36 and 84 would be attributable to cigarette smoking.
- While long-term use of e-cigarettes is associated a number of harms (see section on *Harms Associated with E-Cigarette Use in Children and Youth*) it is not yet known whether such long-term use is associated with premature death and life years lost. The outbreak of vaping-associated lung illness in 2019 and 2020 resulted in at least 2,807 cases and 64 deaths in the US.⁵⁷ In Canada, however, just 20 cases have been identified with no deaths.⁵⁸

⁵⁶ Lariscy J, Hummer R, Rogers R. Cigarette smoking and all-cause and cause-specific adult mortality in the United States. *Demography*. 2018; 55(5): 1855-85.

 ⁵⁷ Baker M, Procter T, Belzak L et al. Vaping-associated lung illness (VALI) in Canada: A descriptive analysis of VALI cases reported from September 2019 to December 2020. *Health Promotion and Chronic Disease Prevention in Canada: Research, Policy and Practice.* 2022; 42(1): 37-44.
⁵⁸ Ibid.

- Based on these assumptions, 3,320 (61.3%) of the cohort who were smoking at age 24 (5,414) would die prematurely due to a smoking-attributable cause (see Table 10).
 - o 1,519 of 2,627 female smokers (57.8%) (see Table 10).
 - o 1,801 of 2,788 male smokers (64.6%) (see Table 10).

Table 10: Estimated Deaths and Life Years Lost Attributable to Cigarette Smoking

Between the Ages of 35 and 84

In a British Columbia Birth Cohort of 40,000

ithout a Child / Youth Screening Program / Brief Intervention

	Female								Male								Total Population					
			[Deaths					Deaths						Deaths Attributable to Smoking							
		In	Att to	By Si	moking Int	ensity	LYL /			In	Att to	By Sn	noking Inte	ensity	LYL /							
Age	Pop.	Cohort	Smoking	Light	Moderate	Heavy	Death	LYL	Pop.	Cohort	Smoking	Light I	Moderate	Heavy	Death	LYL	Pop.	Light	Moderate	Heavy	Total	LYL
35	19,749								19,505								39,254					
36	19,736	13	3.1	0.9	1.0	1.2	50.8	160	19,474	31	6.3	1.8	2.0	2.5	46.5	292	39,210	2.7	3.1	3.7	9	452
37	19,722	14	3.3	0.9	1.1	1.3	49.9	164	19,442	32	6.4	1.8	2.1	2.5	45.6	294	39,164	2.8	3.2	3.8	10	458
38	19,708	14	3.4	1.0	1.1	1.4	48.9	168	19,409	33	6.6	1.9	2.2	2.6	44.7	297	39,117	2.9	3.3	4.0	10	465
39	19,693	15	3.6	1.0	1.2	1.4	47.9	1/4	19,375	34	6.9	2.0	2.2	2.7	43.7	301	39,068	3.0	3.4	4.1	11	475
40	19,677	16	3.8	1.1	1.2	1.5	47.0	1//	19,339	35	7.1	2.0	2.3	2.8	42.8	305	39,017	3.1	3.5	4.3	11	483
41	19,001	10	4.0	1.1	1.3	1.0	46.0	183	19,303	37	7.4	2.1	2.4	2.9	41.9	309	38,964	3.2	3.7	4.5	11	492
42	19,045	10	4.5	1.2	1.4	1.7	45.1	192	19,204	30	7.7	2.2	2.5	5.U 2 1	41.0	221	20,900	5.4 2 E	5.9	4.7	12	507
45	19,025	19	4.5	1.5	1.5	1.0	44.1	207	19,225	40	0.0	2.5	2.0	3.1 2.2	40.1 20.1	227	30,049	3.5 2.7	4.1	4.9	12	520
44	19,003	20	4.0 5.1	1.4	1.0	2.0	43.1	207	19,105	41	8.5	2.4	2.7	3.5	38.2	327	38 724	3.7	4.5	5.4	13	549
46	19 561	23	5.5	1.5	1.8	2.0	41.2	226	19 094	46	9.2	2.5	3.0	3.6	37.3	343	38 656	4 1	4.5	5.8	15	568
40	19 537	23	5.9	1.5	1.0	23	40.3	236	19 047	48	9.6	2.0	3.1	3.8	36.4	351	38 584	44	5.0	6.1	15	587
48	19,511	26	6.2	1.8	2.0	2.5	39.3	246	18,996	50	10.1	2.9	3.3	4.0	35.5	359	38,508	4.6	5.3	6.4	16	605
49	19,484	28	6.7	1.9	2.2	2.6	38.4	257	18,943	53	10.8	3.0	3.5	4.2	34.6	372	38,427	4.9	5.7	6.9	17	629
50	19,454	30	7.2	2.0	2.3	2.8	37.4	268	18,887	56	11.4	3.2	3.7	4.5	33.7	383	38,341	5.2	6.0	7.3	19	651
51	19.422	32	7.7	2.2	2.5	3.0	36.5	281	18.827	60	12.0	3.4	3.9	4.7	32.8	395	38,249	5.6	6.4	7.8	20	676
52	19.388	34	8.2	2.3	2.7	3.2	35.6	293	18,763	64	12.9	3.6	4.2	5.0	31.9	410	38.151	6.0	6.8	8.3	21	703
53	19,352	37	8.9	2.5	2.9	3.5	34.6	307	18,695	68	13.7	3.9	4.5	5.4	31.0	426	38,046	6.4	7.3	8.9	23	733
54	19,312	39	9.5	2.7	3.1	3.7	33.7	322	18,622	73	14.6	4.1	4.7	5.7	30.2	441	37,934	6.8	7.8	9.5	24	763
55	19,270	43	10.3	2.9	3.3	4.1	32.8	338	18,545	78	15.6	4.4	5.1	6.1	29.3	458	37,814	7.3	8.4	10.2	26	796
56	19,224	46	11.1	3.1	3.6	4.4	31.9	353	18,461	83	16.8	4.7	5.4	6.6	28.4	476	37,685	7.9	9.0	10.9	28	829
57	19,174	49	12.0	3.4	3.9	4.7	30.9	370	18,372	89	17.9	5.1	5.8	7.0	27.5	494	37,547	8.5	9.7	11.7	30	864
58	19,121	53	12.9	3.7	4.2	5.1	30.0	388	18,277	95	19.2	5.4	6.2	7.5	26.7	513	37,398	9.1	10.4	12.6	32	901
59	19,063	58	14.0	4.0	4.6	5.5	29.1	409	18,175	102	20.6	5.8	6.7	8.1	25.8	532	37,238	9.8	11.2	13.6	35	941
60	19,000	63	15.2	4.3	4.9	6.0	28.2	429	18,065	110	22.1	6.3	7.2	8.7	25.0	553	37,065	10.6	12.1	14.7	37	982
61	18,932	68	16.5	4.7	5.4	6.5	27.3	451	17,947	118	23.8	6.7	7.7	9.3	24.1	574	36,879	11.4	13.1	15.8	40	1,025
62	18,858	74	18.0	5.1	5.8	7.1	26.4	475	17,820	127	25.6	7.2	8.3	10.0	23.3	596	36,678	12.3	14.1	17.1	44	1,070
63	18,777	81	19.5	5.5	6.3	7.7	25.5	498	17,684	136	27.5	7.8	8.9	10.8	22.5	618	36,461	13.3	15.2	18.5	47	1,116
64	18,689	88	21.3	6.0	6.9	8.4	24.6	525	17,537	147	29.6	8.4	9.6	11.6	21.7	642	36,226	14.4	16.5	20.0	51	1,167
65	18,593	96	23.2	6.6	7.5	9.1	23.8	551	17,379	158	31.9	9.0	10.3	12.5	20.9	665	35,972	15.6	17.9	21.6	55	1,216
66	18,489	105	25.3	7.2	8.2	9.9	22.9	580	17,208	171	34.4	9.7	11.1	13.5	20.1	690	35,697	16.9	19.4	23.4	60	1,270
67	18,375	114	27.7	7.8	9.0	10.9	22.0	609	17,024	184	37.1	10.5	12.0	14.6	19.3	715	35,399	18.3	21.0	25.4	65	1,324
68	18,250	125	30.3	8.6	9.8	11.9	21.2	641	16,826	198	39.9	11.3	13.0	15.7	18.5	739	35,075	19.9	22.8	27.6	70	1,380
69	18,113	137	33.1	9.4	10.7	13.0	20.3	674	16,612	214	43.1	12.2	14.0	16.9	17.7	765	34,725	21.6	24.7	29.9	76	1,438
70	17,963	150	30.3	10.3	11.8	14.2	19.5	707	16,381	231	46.5	13.2	15.1	18.3	17.0	790	34,344	23.4	26.9	32.5	83	1,497
71	17,799	164	39.8 42.6	11.3	14.2	17.0	18.7	743	15,132	249	50.2	14.2	10.3	19.7	16.2	815	33,930	25.5	29.2	35.3	90	1,558
72	17,019	100	45.0	12.4	14.2	10.0	17.9	016	15,005	209	54.2	15.5	10.0	21.5	14.9	059	22 004	27.7	51.7 24 E	30.4 41 7	90 106	1,010
75	17,421	217	47.9 52.6	14.0	15.5	20.6	16.2	0EE 010	15,575	290	56.4 62.0	10.5	20.4	22.9	14.0	003	32,994	20.1	34.5 27 E	41.7	116	1,000
74	16 066	217	52.0	16.2	10.7	20.0	10.5	801	14 022	227	67.0	10.2	20.4	24.0	14.1	007	21 990	32.7 25 5	40.7	45.4	176	1,742
75	16 704	250	63.3	17.0	20.5	22.7	13.5	033	14,525	363	73 1	20.7	22.0	20.7	12.4	908	31,005	38.6	40.7	49.3 53.6	120	1,802
70	16 /17	201	69.6	10.7	20.5	24.9	14.7	933	14,300	300	78.6	20.7	25.7	20.7	12.7	926	30 587	J0.0	44.2	58.0	1/12	1,000
78	16 102	315	76.3	21.6	22.0	30.0	13.2	1 010	13 751	419	84.5	22.5	25.5	33.2	11.0	961	29 853	45.5	52.1	63.1	161	1,910
79	15,757	346	83.7	23.7	27.1	32.9	12.5	1.048	13,301	450	90.6	25.6	29.4	35.6	10.8	974	29,058	49.3	56.5	68.4	174	2.022
80	15,378	379	91.7	26.0	29.8	36.0	11.8	1.083	12,820	481	97.0	27.4	31.4	38.1	10.1	982	28,198	53.4	61.2	74.1	189	2.066
81	14.963	415	100.4	28.4	32.6	39.4	11.1	1.118	12,306	514	103.5	29.3	33.6	40.7	9.5	987	27.269	57.7	66.1	80.1	204	2.104
82	14,510	453	109.7	31.0	35.6	43.1	10.5	1,148	11,759	547	110.2	31.2	35.7	43.3	9.0	986	26,269	62.2	71.3	86.4	220	2,134
83	14,016	494	119.7	33.9	38.8	47.0	9.8	1,174	11,179	580	117.0	33.1	37.9	45.9	8.4	981	25,195	67.0	76.7	92.9	237	2,155
84	13,478	538	130.2	36.9	42.2	51.1	9.2	1,196	10,565	614	123.6	35.0	40.1	48.6	7.9	971	24,043	71.8	82.3	99.7	254	2,166
Total		6,271	1,519	430	493	596	17.1	26,043		8,940	1,801	510	584	707	16.3	29,421		940	1,077	1,304	3,320	55,464

Estimating the Quality of Life Reduction with Cigarette Smoking - No Intervention

- A UK study used a community-based sample ≥ 16 years of age of 14,117 to assess the effect of tobacco smoking on QoL.⁵⁹ After adjusting for age, sex, alcohol use, physical activity, fruit and vegetable consumption, excess weight, ethnicity, marital status, educational attainment, and income, they found a utility of -0.031 (95% CI of -0.018 to -0.045) associated with light tobacco smoking (less than 10 cigarettes per day), -0.033 (95% CI of -0.019 to -0.047) for moderate tobacco smoking (10 to 19 cigarettes per day) and -0.062 (95% CI of -0.042 to -0.082) for heavy tobacco smoking (20 or more cigarettes per day). We used the upper and lower bounds of the 95% CI in the sensitivity analysis.
- We applied the relevant QoL reductions to current smokers in the cohort (starting at age 19) who were alive at a given age (i.e., current smokers less those who died in the previous year due to smoking-attributable causes).
- Based on these assumptions, 13,805 QALYs would be lost between the ages of 19 and 84 by those living with cigarette smoking, 6,602 in females and 7,202 in males (see Table 11).

⁵⁹ Maheswaran H, Petrou S, Rees K et al. Estimating EQ-5D utility values for major health behavioural risk factors in England. *Journal of Epidemiology and Community Health*. 2013; 67(1): 172-80.

	Between the Ages of 19 and 84																	
					lr	n a Br	itish C	Columbia	a Birth	Cohort	of 40,0	000						
			F	w emales	ithout	a Chil	d / You	ath Scree	ning Pro	ogram / Ma	Brief In I <i>les</i>	nterve	ention		То	tal Po	pulat	ion
	Sm	okers A	live	C	QALY	s Lost		Sn	nokers Al	ive	QALYs Lost				Creat	QAL	Ys Lost	
Age	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	ensity Heavy	Total
19	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
20	1,411	851 951	365	48	31	25	103	1,437	727 727	623	49	26 26	42	117	97	57	67 67	221
21	1,411	851	365	40	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
23	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
24	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
25	1,411	851	365	40 48	31	25	103	1,437	727	623	49 49	26	42	117	97	57	67	221
27	, 1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
28	1,411	851	365	48	31	25	103	1,437	727	623	49	26	42	117	97	57	67	221
29 30	1,411 1.411	851 851	365 365	48 49	31 32	25 25	103	1,437	727 727	623 623	49 50	26 27	42 43	117 120	97	57 59	67 69	221
31	1,411	851	365	49	32	25	106	1,437	727	623	50	27	43	120	99	59	69	227
32	1,411	851	365	49	32	25	106	1,437	727	623	50	27	43	120	99	59	69	227
33 34	1,411 1 411	851 851	365 365	49 49	32	25 25	106	1,437	727 727	623 623	50 50	27 27	43 43	120	99	59 59	69 69	227 227
35	1,411	851	365	49	32	25	106	1,437	727	623	50	27	43	120	99	59	69	227
36	1,410	850	364	49	32	25	106	1,435	725	621	50	27	43	120	99	58	69	226
37	1,409	849 849	362	49 40	31	25	106	1,434	723	618 616	50 50	27 27	43	120	99	58	68 68	226
39	1,408	848 847	360	49	31	25	105	1,432	719	613	50	27	43	119	99	58	68	225
40	1,406	846	358	51	33	26	110	1,428	716	610	52	28	44	124	103	60	70	234
41	1,405	844	356	51	33	26	109	1,426	714	607	52	28	44	123	103	60 60	70 70	233
42 43	1,403	843 841	355	51	33	26 26	109	1,423	709	604 601	52	27	44 44	123	103	60 60	70 69	232
44	1,401	840	351	51	32	25	109	1,419	706	598	52	27	43	122	102	60	69	231
45	1,399	838	349	51	32	25	109	1,416	703	594	51	27	43	122	102	60	69	230
46 47	1,398	835 835	347 345	51	32 32	25 25	108	1,414	700 697	591 587	51	27	43 43	121	102	59 59	68 68	230
48	1,394	833	342	51	32	25	108	1,408	694	583	51	27	42	120	102	59	67	228
49	1,392	830	340	51	32	25	107	1,405	690	579	51	27	42	120	102	59	67	227
50 51	1,390	828 826	337 334	53 52	33	25 25	111	1,402	687 683	574 570	53 53	28 27	43 43	124	106	61 61	69 68	235
52	1,386	823	331	52	33	25	111	1,395	679	565	53	27	43	123	105	60	68	233
53	1,383	820	327	52	33	25	110	1,391	674	559	53	27	42	122	105	60	67	232
54 55	1,381 1 378	817 814	323 319	52 52	33	24 24	110 109	1,387	670 664	553 547	52 52	27 27	42 41	121 120	105 104	60 59	66 66	231 229
56	1,375	810	315	52	33	24	108	1,378	659	541	52	27	41	119	104	59	65	228
57	1,371	806	310	52	32	23	108	1,373	653	534	52	26	40	119	104	59	64	226
58	1,368	802 797	305	52 52	32	23	107	1,367	647 640	526 518	52 51	26 26	40 39	118	103	58 58	63 62	225
60	1,359	792	294	53	33	23	108	1,355	633	509	53	26	40	118	105	59	62	226
61	1,355	787	287	53	33	22	107	1,348	625	500	52	26	39	117	105	58	61	224
62 63	1,350	781 775	280 272	52 52	32	22	106	1,341	617 608	490	52 52	25 25	38 37	116	104	58 57	60 58	222
64	1,338	768	264	52	32	20	103	1,335	599	468	51	25	36	112	104	56	57	215
65	1,331	760	255	52	31	20	103	1,316	588	455	51	24	35	111	103	56	55	214
66 67	1,324	752 743	245 234	51 51	31 31	19 18	101	1,306	577 565	442	51 50	24 23	34 33	109 107	102	55 54	53 51	210 207
68	1,308	733	222	51	30	17	98	1,230	552	411	50	23	32	105	101	53	49	203
69	1,298	723	209	50	30	16	96	1,272	538	394	49	22	31	102	100	52	47	199
70	1,288	711	195	53	31	16	100	1,259	523	376	52	23	31	105	104	54 52	47	205
71	1,277	698 684	162	52	30	13	95	1,245	489	335	50	22	29 27	99	103	55 51	44 41	200 194
73	1,251	668	143	51	29	12	92	1,213	470	312	50	20	26	96	101	50	37	188
74 75	1,236	651 622	123	51	28	10	89 86	1,195	450	287	49	20	24	92	100	48 46	34 20	181
75	1,220	633	75	50 49	28 27	8 6	80	1,176	428 404	261	48 47	19	21 19	88 84	98	46 44	30 25	174
77	1,182	590	48	48	26	4	78	1,133	379	201	46	17	16	79	95	42	20	157
78	1,161	565	18	48	25	1	74	1,109	351	168	45	15	14	74	93	40	15	148
79 80	1,13/ 1,111	538 508		47 49	23 24		70 73	1,083	322 290	132 94	44 47	14 14	11 8	69 69	91 96	37 38	11 8	139 143
81	1,083	475		48	23		71	1,027	257	54	46	12	5	63	94	35	5	133
82	1,052	440		47	21		68	995	221	10	44	10	1	56	91	31	1	123
83 84	1,018 981	401 359		45 44	19 17		64 61	962 927	183 143		43 41	9 7		51 48	88 85	28 24		116 109
Total				3.297	2.000	1.306	6.602		2.15		3.289	1.582	2,332	7.202	6.586	3.581	3,638	13,805

Estimating the Number of Deaths and QALYs Lost Attributable to e-Cigarette Use - No Intervention

- Despite the evolving evidence linking e-cigarette use to a variety of harms (see *Harms Associated with E-Cigarette Use in Children and Youth* above), little evidence currently exists quantifying the harms of e-cigarettes in terms of quality-adjusted life expectancy.
- To begin to address the gap in evidence quantifying the harms of e-cigarettes in terms of quality-adjusted life expectancy, Nutt and colleagues gathered a group of experts in 2013 and used a multi-criteria decision analysis approach in a 2-day facilitated workshop to estimate the harms of a variety of nicotine-containing products, including e-cigarettes. While not explicitly stated, it appears that the group of experts consisted of 11 authors of the subsequent publication.⁶⁰ Using this process, they determined that e-cigarettes were just 5% as harmful as smoking conventional cigarettes.⁶¹
- In 2020, Allcot and Rafkin surveyed 137 public health experts whose responses indicated that e-cigarettes where 37% as harmful as smoking conventional cigarettes, when considered in terms of quality-adjusted life expectancy.⁶² There was substantial disagreement between experts, with the interquartile range of beliefs about relative harms ranging from 10% to 60%. When the experts were asked why they disagreed with the prior assessment by Nutt et al. they gave three main explanations: "they disagree with how researchers interpreted the evidence available at the time, new research evidence is becoming available, and e-cigarette products have changed."⁶³ In addition, three of the authors of the Nutt et al study had financial ties with e-cigarette producers.⁶⁴ In particular, the consultant who facilitated the group process for the Nutt et al. paper had financial ties with British American Tobacco and a number of other companies that produce smoking cessation products.⁶⁵ Indeed, the editors of the publishing journal took the extraordinary step of justifying why they accepted the paper for publication despite the consultant's financial ties.⁶⁶ By comparison, the research by Allcot and Rafkin explicitly excluded "people with tobacco industry affiliations." 67
- Based on the available evidence, we have assumed that e-cigarettes use is 37% as harmful as smoking conventional cigarettes, when considered in terms of quality-adjusted life expectancy. This estimate was varied from 10% to 60% in the sensitivity analysis.
- Based on this assumption, e-cigarette use in the birth cohort would result in 1,695 premature deaths and a loss of 31,943 QALYs (see Table 12).

⁶⁰ Nutt D, Phillips L, Balfour D et al. Estimating the harms of nicotine-containing products using the MCDA approach. *European Addiction Research*. 2014; 20: 218-25.

⁶¹ Ibid.

⁶² Allcott H, Rafkin C. *Optimal Regulation of e-Cigarettes: Theory and Evidence*. National Bureau of Economic Research Working Paper Series, August 2021. Available online at

https://www.nber.org/system/files/working_papers/w27000/w27000.pdf. Accessed November 2022. ⁶³ Ibid.

⁶⁴ Nutt D, Phillips L, Balfour D et al. Estimating the harms of nicotine-containing products using the MCDA approach. *European Addiction Research*. 2014; 20: 218-25.

⁶⁵ Ibid.

⁶⁶ Ibid.

⁶⁷ Allcott H, Rafkin C. *Optimal Regulation of e-Cigarettes: Theory and Evidence*. National Bureau of Economic Research Working Paper Series, August 2021. Available online at

https://www.nber.org/system/files/working_papers/w27000/w27000.pdf. Accessed November 2022.

							Betw	een t	he Ag	ges of	19 ai	nd 8	4						
						In a	British	Colu	mbia E	Birth C	ohort	of 4	0,000						
			5.		With	out a C	Child / Y	outh S	Screeni	ng Pro	gram /	Briet	Interv	ventior	1	Total	Donul	ation	
	c-	Cig	FE	emaies	e-Cig		_	c-	Cig		viules	e-Cig			e-	Cig	Popul	ation	Total
Age	Alive	Deaths	Alive	Deaths	LE	LYL	QALYs	Alive	Deaths	Alive	Deaths	LE	LYL	QALYs	Alive	Deaths	LYL	QALYs	QALYs
19 20	1,274	0.0	8,572	0.0	66.4	0	257	1,619	0.0	8,385	0.0	61.4	0	225	16,957	0	0	482	482
20	1,815	0.0	6,154	0.0	64.4	0	130	2,086	0.0	6,321	0.0	59.5	0	131	12,475	0	0	261	261
22	2,086	0.0	4,945	0.0	63.5	0	91	2,320	0.0	5,288	0.0	58.6	0	99	10,234	0	0	190	190
23	2,356	0.0	3,736	0.0	62.5	0	61	2,554	0.0	4,256	0.0	57.7	0	72 50	7,992	0	0	133	133
25	2,627	0.0	2,527	0.0	60.5	0	37	2,788	0.0	3,224	0.0	55.8	0	50	5,751	0	0	87	87
26	2,627	0.0	2,527	0.0	59.6	0	37	2,788	0.0	3,224	0.0	54.8	0	50	5,751	0	0	87	87
27 28	2,627	0.0	2,527	0.0	58.6 57.6	0	37	2,788	0.0	3,224	0.0	53.9 53.0	0	50 50	5,751	0	0	87 87	87 87
29	2,627	0.0	2,527	0.0	56.6	0	37	2,788	0.0	3,224	0.0	52.1	0	50	5,751	0	0	87	87
30	2,627	0.0	2,527	0.0	55.7	0	38	2,788	0.0	3,224	0.0	51.1	0	52	5,751	0	0	89	89
31 32	2,627	0.0	2,527	0.0	54.7 53.7	0	38 38	2,788	0.0	3,224	0.0	50.2 49 3	0	52 52	5,751	0	0	89 89	89 89
33	2,627	0.0	2,527	0.0	52.8	0	38	2,788	0.0	3,224	0.0	48.4	0	52	5,751	0	0	89	89
34	2,627	0.0	2,527	0.0	51.8	0	38	2,788	0.0	3,224	0.0	47.4	0	52	5,751	0	0	89	89
35 36	2,627	0.0 3 1	2,527	0.0	50.8 ⊿a a	0	38	2,788	0.0 6.3	3,224	0.0	46.5 45.6	0 123	52 51	5,751	0	0 178	89 89	89 268
37	2,623	3.3	2,520	1.1	48.9	57	38	2,781	6.4	3,221	2.7	44.7	123	51	5,747	4	181	89	208
38	2,617	3.4	2,524	1.2	47.9	59	38	2,768	6.6	3,216	2.9	43.7	125	51	5,739	4	184	89	273
39	2,613	3.6	2,522	1.3	47.0	61 62	38	2,761	6.9 7 1	3,213	3.0	42.8	127	51	5,735	4	188	89 02	277
40 41	2,609	5.o 4.0	2,521	1.5	40.0 45.1	64	39	2,734	7.1	3,210	3.2	41.9	129	53	5,731	4 5	191	95 92	285
42	2,601	4.3	2,518	1.5	44.1	67	39	2,739	7.7	3,203	3.3	40.1	133	53	5,721	5	200	92	293
43	2,597	4.5	2,516	1.6	43.1	70 72	39	2,731	8.0	3,200	3.5	39.1	136	53	5,716	5	205	92 02	298
44 45	2,592	4.0 5.1	2,515	1.7	42.2	76	39	2,725	8.7	3,190	3.8	37.3	150	53	5,705	6	211	92 92	309
46	2,581	5.5	2,511	2.0	40.3	79	39	2,705	9.2	3,188	4.0	36.4	146	53	5,699	6	225	92	317
47	2,575	5.9	2,509	2.1	39.3	83	39	2,695	9.6	3,184	4.2	35.5	149	53	5,693	6	232	92	324
48 49	2,569	6.2 6.7	2,506	2.3 2.4	38.4 37.4	86 90	39 39	2,685	10.1	3,180	4.4 4.7	34.6 33.7	153 159	53 53	5,686	7	239 249	92 91	331 341
50	2,555	7.2	2,501	2.6	36.5	95	40	2,663	11.4	3,170	5.0	32.8	164	55	5,671	8	258	95	353
51	2,548	7.7	2,499	2.8	35.6	99	40	2,651	12.0	3,165	5.3	31.9	169	55	5,663	8	269	95	363
52 53	2,539	8.2 8.9	2,496	3.0 3.2	34.6 33.7	103 109	40 40	2,638	12.9 13.7	3,159	5.7 6.1	31.0 30.2	176 184	54 54	5,655	9	280 292	95 94	374 387
54	2,521	9.5	2,489	3.5	32.8	114	40	2,610	14.6	3,146	6.5	29.3	190	54	5,635	10	304	94	398
55	2,511	10.3	2,485	3.8	31.9	120	40	2,594	15.6	3,139	7.0	28.4	198	54	5,625	11	318	94	412
56 57	2,499	11.1 12.0	2,481	4.1 4.4	30.9 30.0	126 132	40 40	2,577	16.8 17.9	3,132	7.5 8.1	27.5	207 215	54 54	5,613	12 12	332 347	94 93	426 440
58	2,475	12.9	2,472	4.8	29.1	139	40	2,540	19.2	3,115	8.7	25.8	224	53	5,587	13	363	93	456
59	2,461	14.0	2,467	5.2	28.2	146	39	2,520	20.6	3,106	9.3	25.0	233	53	5,573	15	380	93	472
60 61	2,445	15.2 16.5	2,461	5.6 6.2	27.3	154 162	40 40	2,497	22.1 23.8	3,096	10.1 10.9	24.1 23 3	244 254	54 54	5,557	16 17	398 417	95 94	492 511
62	2,411	18.0	2,448	6.7	25.5	172	40	2,448	25.6	3,073	11.8	22.5	265	54	5,521	19	437	94	530
63	2,391	19.5	2,441	7.3	24.6	181	40	2,421	27.5	3,060	12.8	21.7	277	53	5,501	20	457	93	550
64 65	2,370	21.3 23.2	2,433	8.0 8.8	23.8 22 9	191 202	40 39	2,391	29.6 31 9	3,046	13.9 15.0	20.9	289	53 53	5,479	22 24	480 503	93 92	573 595
66	2,321	25.3	2,414	9.7	22.0	213	39	2,325	34.4	3,015	16.3	19.3	315	52	5,429	26	528	91	620
67	2,294	27.7	2,404	10.6	21.2	225	39	2,288	37.1	2,997	17.8	18.5	329	52	5,401	28	555	90	645
68 69	2,264	30.3 33 1	2,392	11.7 13.0	20.3	239	38	2,248	39.9 43 1	2,978	19.4 21.1	17.7 17.0	343 350	51 51	5,370	31 34	582 611	90 89	672 700
70	2,230	36.3	2,365	14.3	18.7	267	40	2,205	46.5	2,934	23.1	16.2	375	53	5,298	37	642	93	735
71	2,154	39.8	2,349	15.9	17.9	283	39	2,108	50.2	2,908	25.3	15.5	391	52	5,257	41	674	91	766
72 72	2,111	43.6	2,331	17.6	17.1	300	39	2,054	54.2	2,881	27.7	14.8	408	51	5,212	45	709	90 80	799
75	2,005	47.9 52.6	2,312	21.8	15.5	338	38	1,995	58.4 63.0	2,850	33.3	13.4	427	50	5,102	55	745	89 87	870
75	1,953	57.7	2,266	24.3	14.7	358	37	1,864	67.9	2,780	36.6	12.7	465	49	5,046	61	823	85	908
76 77	1,889	63.3	2,238	27.2	14.0	380	36	1,791	73.1	2,740	40.3	12.0	485	48	4,979	68 75	865	83	948
77 78	1,743	09.0 76.3	∠,∠08 2,174	30.5 34.2	13.2 12.5	404 429	35 34	1,628	78.0 84.5	2,696 2,646	44.5 49.2	10.8	506 529	40 45	4,904	75 83	928 910	81 79	991 1,036
79	1,660	83.7	2,135	38.6	11.8	456	33	1,538	90.6	2,592	54.5	10.1	552	43	4,727	93	1,008	77	1,084
80	1,568	91.7	2,091	43.7	11.1	486	36	1,441	97.0	2,531	60.5	9.5	576	45	4,623	104	1,062	81	1,144
81 82	1,468 1,358	100.4	2,042 1,985	49.6 56.5	10.5 9.8	518 554	30 37	1,337	103.5	2,464 2,389	67.3 75.2	9.0 8.4	631	43 40	4,506	132	1,121 1,185	79 77	1,200 1,261
83	1,238	119.7	1,921	64.7	9.2	594	37	1,110	117.0	2,305	84.3	7.9	661	40	4,225	149	1,256	76	1,332
84	1,108	130.2	1,846	74.8	8.6	641	37	986	123.6	2,210	95.0	7.3	696	40	4,056	170	1,337	77	1,414
Total		1,519		681	15.4	10,484	3,053		1,801		1,014	14.4	14,600	3,806		1,695	25,084	6,859	31,943

Table 12: Estimated Deaths and QALYs Lost Due to e-Cigarette Use

Annual Visits to a General Practitioner

- As noted earlier, a key variable in the effectiveness of screening and brief intervention is the proportion of children and youth that make contact with a primary care provider.
- Using data provided by the BC Ministry of Health, Health Sector Information, Analysis and Reporting Division⁶⁸ we were able to generate BC-specific rates of primary care visits and average visits per year for the fiscal years ending in 2012/13 to 2016/17, in total and by sex, as shown in Table 13 below.
- For the five years considered, the average proportion of children and youth ages 10-19 visiting a GP is 70%, and the average number of GP visits per adolescent is 2.07 per year (see Table 13). The proportion of males visiting a GP was 65.4% (see Table 13a) and for females it was 75.0% (see Table 13b). The average number of visits per male in the population was 1.75 and for females was 2.42.

Table 13: General Practitioner Visits by Children and Youth

		British Col	umbia, 2012	2/13 to 2016	5/17	
Age		P	opulation in	Each Age Gro	oup	
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total
10 - 14	234,780	231,544	230,178	230,177	232,010	1,158,689
15 - 19	284,482	282,214	279,997	276,909	272,677	1,396,279
Total	519,262	513,758	510,175	507,086	504,687	2,554,968
		Number	of Unique In	dividuals wi	th GP Visit	
10 - 14	163,332	160,912	158,653	160,260	159,826	802,983
15 - 19	205,821	200,410	196,629	192,566	189,547	984,973
Total	369,153	361,322	355,282	352,826	349,373	1,787,956
		Propor	tion of Indiv	iduals with a	GP Visit	
10 - 14	69.6%	69.5%	68.9%	69.6%	68.9%	69.3%
15 - 19	72.3%	71.0%	70.2%	69.5%	69.5%	70.5%
Total	71.1%	70.3%	69.6%	69.6%	69.2%	70.0%
			Number	of GP Visits		
10 - 14	429,881	422,188	412,182	413,411	407,442	2,085,104
15 - 19	681,806	659,038	641,316	619,790	601,925	3,203,875
Total	1,111,687	1,081,226	1,053,498	1,033,201	1,009,367	5,288,979
		GP Visits	s per Individ	ual in Total P	opulation	
10 - 14	1.83	1.82	1.79	1.80	1.76	1.80
15 - 19	2.40	2.34	2.29	2.24	2.21	2.29
Total	2.14	2.10	2.06	2.04	2.00	2.07

⁶⁸ Aciemme (Sam) Ospan, Senior Manager, Lifetime Prevention Schedule, Healthy Living and Health Promotion Branch, BC Ministry of Health. January 30, 2019. Personal communication.

Tab	le 13a: Ge	neral Pra	ctitioner \	/isits by C	hildren ar	d Youth
		British Col	umbia, 2012	2/13 to 2016	5/17	
			Males			
Age		P	opulation in	Each Age Gro	oup	
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total
10 - 14	121,031	119,378	118,720	118,572	119,586	597,287
15 - 19	149,279	147,563	145,417	143,117	140,451	725,827
Total	270,310	266,941	264,137	261,689	260,037	1,323,114
		Numb	er of Unique	Males with	GP Visit	
10 - 14	82,970	81,960	80,756	81,067	80,862	407,615
15 - 19	95,992	93,224	91,170	89,118	87,596	457,100
Total	178,962	175,184	171,926	170,185	168,458	864,715
		Prop	ortion of Ma	ales with a G	P Visit	
10 - 14	68.6%	68.7%	68.0%	68.4%	67.6%	68.2%
15 - 19	64.3%	63.2%	62.7%	62.3%	62.4%	63.0%
Total	66.2%	65.6%	65.1%	65.0%	64.8%	65.4%
			Number	of GP Visits		
10 - 14	215,841	211,444	206,909	206,013	202,386	1,042,593
15 - 19	270,303	259,637	253,874	244,381	238,257	1,266,452
Total	486,144	471,081	460,783	450,394	440,643	2,309,045
		GP Vis	sits per Male	in Total Pop	oulation	
10 - 14	1.78	1.77	1.74	1.74	1.69	1.75
15 - 19	1.81	1.76	1.75	1.71	1.70	1.74
Total	1.80	1.76	1.74	1.72	1.69	1.75

Table 13b: General Practitioner Visits by Children and YouthBritish Columbia, 2012/13 to 2016/17

4		P	Female	S Fach Ann Cu		
Age		P	opulation in	Each Age Gro	oup	
Group	2012/13	2013/14	2014/15	2015/16	2016/17	Total
10 - 14	113,749	112,166	111,458	111,605	112,424	561,402
15 - 19	135,203	134,651	134,580	133,792	132,226	670,452
Total	248,952	246,817	246,038	245,397	244,650	1,231,854
		Numbe	r of Unique I	Females with	n GP Visit	
10 - 14	80,381	78,955	77,909	79,202	78,985	395,432
15 - 19	109,865	107,210	105,496	103,488	101,995	528,054
Total	190,246	186,165	183,405	182,690	180,980	923,486
		Propo	ortion of Ferr	ales with a (GP Visit	
10 - 14	70.7%	70.4%	69.9%	71.0%	70.3%	70.4%
15 - 19	81.3%	79.6%	78.4%	77.3%	77.1%	78.8%
Total	76.4%	75.4%	74.5%	74.4%	74.0%	75.0%
			Number	of GP Visits		
10 - 14	214,033	210,738	205,270	207,393	205,052	1,042,486
15 - 19	411,487	399,386	387,411	375,393	363,660	1,937,337
Total	625,520	610,124	592,681	582,786	568,712	2,979,823
		GP Visi	ts per Femal	e in Total Po	pulation	
10 - 14	1.88	1.88	1.84	1.86	1.82	1.86
15 - 19	3.04	2.97	2.88	2.81	2.75	2.89
Total	2.51	2.47	2.41	2.37	2.32	2.42

Source: BC Ministry of Health, Health Sector Information, Analysis and Reporting Division Calculations by H. Krueger & Associates, Inc.

Effectiveness of the Intervention(s)

- The USPSTF found that behavioural interventions led to an 18% (95% CI of 8% to 27%) **reduction in smoking initiation** in adolescents, based on a meta-analysis of 13 studies (RR 0.82, 95% CI of 0.73 0.92).⁶⁹
- This effectiveness is almost identical to that observed by the CTFPHC who found that interventions aimed at reducing smoking initiation among non-smoking children and adolescents had an effectiveness of 18% (RR 0.82, 95% CI of 0.72 to 0.94).⁷⁰
- The USPSTF found that behavioural interventions did not lead to an **increase in smoking cessation** in adolescents, based on a **meta-analysis of 9 studies** (RR 0.97, 95% CI of 0.93 1.01).⁷¹
- The CTFPHC, on the other hand, found that behavioural interventions aimed at smoking cessation among children and adolescents have an effectiveness of 34% (RR 1.34, 95% CI of 1.05 to 1.69), based on a **meta-analysis of 3 randomized controlled trials** (RCTs).⁷²
- A significant effect was observed in 2 of the 3 RCTs included by the CTFPHC. In the study by Hollis et al, the interventions consisted of an individually tailored intervention based on the smoking status and stage of change of the individual. It included a 30-second clinician advice message, a 10-minute interactive computer program, a 5-minute motivational interview, and up to two 10-minute telephone or in person booster sessions.⁷³ In the study by Pbert and colleagues, the intervention consisted of brief counselling by the paediatric provider followed by one visit and four telephone calls by older peer counsellors (aged 21 to 25 years).⁷⁴
- Based on a limited number of studies with small sample sizes, the USPSTF found no beneficial intervention effect associated with medication on the likelihood of smoking cessation in adolescents.⁷⁵
- For modelling purposes we assumed an 18% (95% CI of 8% to 27%) reduction in smoking initiation and a 34% (95% CI of 5% to 69%) increase in smoking cessation in children and youth associated with screening and a behavioural intervention. We used the upper and lower bounds of the 95% CI in the sensitivity analysis.

⁶⁹ Selph S, Patnode C, Bailey S et al. Primary care-relevant interventions for tobacco and nicotine use prevention and cessation in children and adolescents: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020; 323(16): 1599-608.

⁷⁰ Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189(8): e310-16.

⁷¹ Selph S, Patnode C, Bailey S et al. Primary care-relevant interventions for tobacco and nicotine use prevention and cessation in children and adolescents: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020; 323(16): 1599-608.

⁷² Canadian Task Force on Preventive Health Care. Recommendations on behavioural interventions for the prevention and treatment of smoking among school-aged children and youth. *Canadian Medical Association Journal*. 2017; 189(8): e310-16.

⁷³ Hollis J, Polen M, Whitlock E et al. Teen Reach: Outcomes from a randomized, controlled trial of a tobacco reduction program for teens seen in primary medical care. *Pediatrics*. 2005; 115(4): 981-9.

⁷⁴ Pbert L, Flint A, Fletcher K et al. Effect of a pediatric-based smoking prevention and cessation intervention for adolescents: A randomized, controlled trial. *Pediatrics*. 2008; 121(4): e738-47.

⁷⁵ Selph S, Patnode C, Bailey S et al. Primary care-relevant interventions for tobacco and nicotine use prevention and cessation in children and adolescents: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2020; 323(16): 1599-608.

Estimating the Prevalence of Cigarette Smoking and E-Cigarette Use – With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the number of current smokers at age 24 in the birth cohort from 5,414 (see Table 7) to 4,316 (see Table 14), a reduction of 1,099 (20.3%). The number of e-cigarette users at age 24 would also be reduced from 5,751 (see Table 7) to 4,510 (see Table 14), a reduction of 1,241 (21.6%).

Table 14: Estimated Prevalence of Cigarette Smoking and E-Cigarette Use

Between the Ages of 8 and 24 In a British Columbia Birth Cohort of 40,000 With a Child / Youth Screening Program / Brief Intervention

			Ferr	nales						l	Males						Total	Popula	tion		
		No l	nterven	tion					No In	tervent	tion					No I	nterven	tion			
		(Table 7)	With	Interve	ntion		(1	Table 7)		With I	nterve	ntion		(Table 7)	With I	nterve	ntion
			e-	Cig		e-(Cig			e-	Cig		e-(Cig			e-C	Cig		e-(Cig
Age	Pop.	Cig	Ехр	Est	Cig	Exp	Est	Pop.	Cig	Exp	Est	Cig	Exp	Est	Pop.	Cig	Exp	Est	Cig	Exp	Est
8	19,918	29			25			19,907	46			40			39,824	75			65		
9	19,917	44			38			19,906	69			59			39,822	113			97		
10	19,915	66			56			19,904	104			89			39,820	170			145		
11	19,914	88			75			19,903	138			119			39,817	226			194		
12	19,913	147			125			19,902	230			198			39,815	377			323		
13	19,911	249	2,708	438	213	2,120	343	19,900	391	2,448	537	336	1,932	424	39,812	641	5,156	975	549	4,052	767
14	19,910	388	3,394	791	332	2,658	620	19,898	610	3,149	1,094	524	2,485	863	39,808	999	6,543	1,886	856	5,142	1,483
15	19,907	535	4,081	1,145	455	3,176	886	19,896	840	3,850	1,651	724	3,049	1,312	39,803	1,375	7,930	2,796	1,178	6,225	2,198
16	19,904	660	4,767	1,498	559	3,694	1,153	19,891	1,036	4,550	2,208	894	3,613	1,760	39,795	1,696	9,318	3,706	1,452	7,307	2,913
17	19,900	733	5,454	1,851	620	4,212	1,420	19,885	1,151	5,251	2,765	994	4,177	2,208	39,784	1,884	10,705	4,616	1,614	8,389	3,628
18	19,894	1,004	6,893	2,888	846	5,299	2,203	19,876	1,385	5,104	4,313	1,197	4,058	3,454	39,770	2,388	11,997	7,202	2,043	9,357	5,657
19	19,888	1,274	5,866	2,706	1,047	4,510	2,064	19,864	1,619	4,343	4,042	1,397	3,453	3,236	39,752	2,893	10,209	6,748	2,444	7,963	5,300
20	19,881	1,545	4,839	2,524	1,247	3,720	1,925	19,851	1,852	3,583	3,770	1,597	2,849	3,019	39,732	3,397	8,422	6,294	2,844	6,569	4,944
21	19,874	1,815	3,812	2,342	1,447	2,930	1,786	19,835	2,086	2,822	3,498	1,798	2,244	2,801	39,709	3,901	6,634	5,841	3,245	5,174	4,588
22	19,867	2,086	2,785	2,160	1,648	2,141	1,648	19,817	2,320	2,062	3,226	1,998	1,639	2,584	39,684	4,406	4,847	5,387	3,646	3,780	4,231
23	19,859	2,356	1,758	1,978	1,848	1,351	1,509	19,796	2,554	1,301	2,955	2,198	1,035	2,366	39,656	4,910	3,059	4,933	4,046	2,386	3,875
24	19,851	2,627	731	1,796	2,048	562	1,370	19,775	2,788	541	2,683	2,267	430	2,148	39,626	5,414	1,272	4,479	4,316	992	3,518

• Figure 3 provides a visual representation of the modelled transitions between conventional and e-cigarette use between the ages of 13 and 24 with a child and youth screening program and brief intervention.

Estimating the Number of Deaths and Life Years Lost Attributable to Cigarette Smoking – With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the number of deaths and life years lost attributable to cigarette smoking between the ages of 36 and 84 from 3,320 / 55,464 (see Table 10) to 2,649 / 44,239 (see Table 15), a reduction of 671 deaths (20.2%) and 11,225 life years lost (20.2%).

			Tab	le 15	5: Esti	mate	d De	aths a	nd Li	fe Yea	ars Lo	ost A	ttribu	itabl	e to	Cigare	tte Sr	nok	ing			
								Be	etweer	n the A	Ages o	f 35 a	and 84	ļ								
								In a Br	itish Cc	lumbia	Birth	Cohor	rt of 40	,000,								
							Wit	h a Child	/ Youth	Screeni	ng Prog	ram /	Brief In	terven	tion							
			Fem	nale							0 0	М	ale					7	otal Pop	oulatio	n	
				Deaths								Deaths						Deaths	Attributa	ble to Sr	noking	
A.g.o	Dem	ln Cohort	Att to	By Sn	noking Inte Moderate	ensity	LYL/	IVI	Dere	In Cabart	Att to	By Sn	noking Int	ensity	LYL/	IVI	Dava	light	Modorato	Hoppy	Total	IVI
35	19 749	Conort	Smoking	Light	wouldtate	e neavy	Death		19 505	Conort	Smoking	Light	wouerate	Heavy	Death		39 254	Light	wouerate	Tiedvy	TULAI	
36	19,736	13	2.5	0.7	0.8	1.0	50.8	125	19,474	31	5.1	1.4	1.7	2.0	46.5	238	39,210	2.1	2.5	3.0	8	363
37	19,722	14	2.6	0.7	0.8	1.0	49.9	128	19,442	32	5.2	1.5	1.7	2.1	45.6	239	39,164	2.2	2.5	3.1	8	367
38	19,708	14	2.7	0.8	0.9	1.1	48.9	131	19,409	33	5.4	1.5	1.8	2.1	44.7	242	39,117	2.3	2.6	3.2	8	373
39	19,693	15	2.8	0.8	0.9	1.1	47.9	136	19,375	34	5.6	1.6	1.8	2.2	43.7	245	39,068	2.4	2.7	3.3	8	381
40 41	19,677	16	2.9	0.8	1.0	1.2	47.0 46.0	138	19,339	35	5.8	1.0	1.9	2.3	42.8 41 9	248 251	39,017	2.5	2.8	3.4	9	387
42	19,643	18	3.3	0.9	1.1	1.2	45.1	150	19,264	38	6.3	1.8	2.0	2.5	41.0	251	38,908	2.7	3.1	3.8	10	406
43	19,625	19	3.5	1.0	1.1	1.4	44.1	155	19,225	40	6.5	1.8	2.1	2.6	40.1	261	38,849	2.8	3.3	3.9	10	416
44	19,605	20	3.7	1.1	1.2	1.5	43.1	161	19,183	41	6.8	1.9	2.2	2.7	39.1	266	38,788	3.0	3.4	4.1	11	427
45	19,584	21	4.0	1.1	1.3	1.6	42.2	169	19,140	43	7.1	2.0	2.3	2.8	38.2	271	38,724	3.1	3.6	4.4	11	439
46	19,561	23	4.3	1.2	1.4	1.7	41.2	176	19,094	46	7.5	2.1	2.4	2.9	37.3	279	38,656	3.3	3.8	4.6	12	455
47	19,537	24	4.0	1.3	1.5	1.8	39.3	192	18,996	48 50	8.2	2.2	2.5	3.2	35.5	285	38,508	3.7	4.0	5.1	13	403
49	19,484	28	5.2	1.5	1.7	2.0	38.4	200	18,943	53	8.8	2.5	2.8	3.4	34.6	303	38,427	4.0	4.5	5.5	14	503
50	19,454	30	5.6	1.6	1.8	2.2	37.4	209	18,887	56	9.2	2.6	3.0	3.6	33.7	312	38,341	4.2	4.8	5.8	15	521
51	19,422	32	6.0	1.7	1.9	2.4	36.5	219	18,827	60	9.8	2.8	3.2	3.8	32.8	322	38,249	4.5	5.1	6.2	16	541
52	19,388	34	6.4	1.8	2.1	2.5	35.6	228	18,763	64	10.5	3.0	3.4	4.1	31.9	334	38,151	4.8	5.5	6.6	17	562
53 54	19,352	37	6.9 74	2.0	2.2	2.7	34.6 33.7	239	18,695	68 73	11.2	3.2 3.4	3.6 3.9	4.4 4.7	31.0	347	38,046	5.1	5.9	7.1	18 19	586 610
55	19,270	43	8.0	2.3	2.4	3.2	32.8	264	18,545	78	12.7	3.6	4.1	5.0	29.3	372	37,814	5.9	6.7	8.2	21	636
56	19,224	46	8.6	2.4	2.8	3.4	31.9	275	18,461	83	13.6	3.9	4.4	5.4	28.4	387	37,685	6.3	7.2	8.8	22	663
57	19,174	49	9.3	2.6	3.0	3.7	30.9	289	18,372	89	14.6	4.1	4.7	5.7	27.5	402	37,547	6.8	7.8	9.4	24	690
58	19,121	53	10.1	2.9	3.3	4.0	30.0	303	18,277	95	15.6	4.4	5.1	6.1	26.7	417	37,398	7.3	8.3	10.1	26	720
59 60	19,063	58 63	11.0	3.1	3.0	4.3	29.1	319	18,175	102	16.8	4.7 5.1	5.4	6.6 7 1	25.8 25.0	433	37,238	7.8 8.4	9.0	10.9	28	752
61	18,932	68	12.9	3.6	4.2	5.1	27.3	352	17,947	118	19.3	5.5	6.3	7.6	24.1	467	36,879	9.1	10.4	12.7	32	818
62	18,858	74	14.0	4.0	4.5	5.5	26.4	370	17,820	127	20.8	5.9	6.7	8.2	23.3	484	36,678	9.8	11.3	13.7	35	855
63	18,777	81	15.2	4.3	4.9	6.0	25.5	388	17,684	136	22.4	6.3	7.3	8.8	22.5	503	36,461	10.6	12.2	14.8	38	891
64	18,689	88	16.6	4.7	5.4	6.5	24.6	409	17,537	147	24.1	6.8	7.8	9.5	21.7	522	36,226	11.5	13.2	16.0	41	932
65	18,593	96 105	18.1	5.1	5.9	7.1	23.8	430	17,379	158	25.9	7.3	8.4	10.2	20.9	541	35,972	12.5	14.3	17.3	44	9/1
67	18,375	103	21.6	6.1	7.0	8.5	22.9	475	17,208	184	30.2	8.5	9.8	11.0	19.3	581	35,399	14.6	15.5	20.3	52	1,013
68	18,250	125	23.6	6.7	7.7	9.3	21.2	500	16,826	198	32.5	9.2	10.5	12.8	18.5	601	35,075	15.9	18.2	22.0	56	1,101
69	18,113	137	25.8	7.3	8.4	10.1	20.3	525	16,612	214	35.1	9.9	11.4	13.8	17.7	622	34,725	17.2	19.8	23.9	61	1,147
70	17,963	150	28.3	8.0	9.2	11.1	19.5	552	16,381	231	37.9	10.7	12.3	14.9	17.0	643	34,344	18.7	21.5	26.0	66	1,194
71	17,799	164	31.0	8.8	10.1	12.2	18.7	579	16,132	249	40.8	11.6	13.2	16.0	16.2	663	33,930	20.3	23.3	28.2	72	1,242
72	17,019	198	34.0	10.6	12.1	13.4	17.5	637	15,803	203	44.1	13.5	14.3	18.7	14.8	702	32,994	24.0	27.5	33.3	85	1,230
74	17,204	217	41.0	11.6	13.3	16.1	16.3	667	15,260	313	51.3	14.5	16.6	20.1	14.1	721	32,464	26.1	29.9	36.2	92	1,388
75	16,966	238	45.0	12.7	14.6	17.7	15.5	697	14,923	337	55.2	15.6	17.9	21.7	13.4	738	31,889	28.4	32.5	39.4	100	1,435
76	16,704	261	49.4	14.0	16.0	19.4	14.7	727	14,560	363	59.5	16.8	19.3	23.4	12.7	755	31,265	30.8	35.3	42.7	109	1,482
77	16,417	287	54.2	15.3	17.6	21.3	14.0	758	14,170	390	64.0	18.1	20.7	25.1	12.0	769	30,587	33.4	38.3	46.4	118	1,527
78 79	16,102	315	59.5 65.3	16.8	19.3 21.2	23.4	13.2	/88 817	13,751	419	68.7 73.7	19.4 20.9	22.3	27.0 28.0	11.4	782	29,853	30.3	41.6 45.1	50.3 54.6	128	1,570
80	15,378	379	71.5	20.2	23.2	28.1	11.8	845	12,820	481	78.9	22.3	25.6	31.0	10.1	799	28,198	42.6	48.8	59.1	150	1,644
81	14,963	415	78.3	22.2	25.4	30.7	11.1	871	12,306	514	84.2	23.8	27.3	33.1	9.5	803	27,269	46.0	52.7	63.8	163	1,674
82	14,510	453	85.6	24.2	27.7	33.6	10.5	895	11,759	547	89.7	25.4	29.1	35.2	9.0	802	26,269	49.6	56.8	68.8	175	1,697
83	14,016	494	93.3	26.4	30.3	36.6	9.8	916	11,179	580	95.1	26.9	30.9	37.4	8.4	798	25,195	53.3	61.1	74.0	188	1,714
84 Total	13,478	538 6,271	101.6 1,184	28.7 335	32.9 384	39.9 465	9.2 17.1	932 20,308	10,565	ь14 8,940	100.6 1,465	28.5 415	32.6 475	39.5 575	7.9 16.3	789 23,931	24,043	57.2 750	65.6 859	79.4 1,040	202 2,649	1,722 44,239

Estimating the Quality of Life Reduction Attributable to Cigarette Smoking - With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the QALYs lost between the ages of 19 and 84 by those living with cigarette smoking from 13,805 (see Table 11) to 11,007 (see Table 16), a reduction of 2,798 QALYs lost (20.3%).

Tab	ole 16:	Estin	nated	Qual	ity-/	\dju	sted	Life Ye	ears L	ost A	ttribı	utab	le to	o Cig	aret	te Sr	nok	ing
						Betv	weer	the Ag	es of :	19 and	84							
					In a	a Briti	sh Co	lumbia B	irth Co	hort of	40,00	0						
				Wi	th a C	hild / \	outh ?	Screening	Progra	m / Brie	fInterv	entio	n					
			Fem	ales						Ма	iles				То	tal Po	pulat	ion
	Sn	nokers Ali	ve		QALY	s Lost		Sm	okers Ali	ve		QAL	/s Lost			QAL	rs Lost	
Age	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	Heavy	Light	Mod	Heavy	Total	Light	Mod	Heavy	Total
19	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
20	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
21	1,100	664 664	284	37	24 24	19 19	81 81	1,169	592 592	507	40 40	21	34 34	95 95	77	45 45	54 54	176 176
23	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
24	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
25	1,100	664 664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54 54	176
20	1,100	664	284	37	24	19	81	1,109	592	507	40	21	34	95	77	45	54	176
28	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
29	1,100	664	284	37	24	19	81	1,169	592	507	40	21	34	95	77	45	54	176
30	1,100	664 664	284 284	38 38	25 25	20	83	1,169	592 592	507	41 41	22	35	98 98	79	47 47	55 55	181 181
32	1,100	664	284	38	25	20	83	1,169	592	507	41	22	35	98	79	47	55	181
33	1,100	664	284	38	25	20	83	1,169	592	507	41	22	35	98	79	47	55	181
34	1,100	664 664	284	38 38	25 25	20	83	1,169	592 592	507 507	41	22	35	98 98	79 79	47 47	55 55	181 181
36	1,099	663	284	38	25	20	83	1,167	590	505	41	22	35	98	79	46	55	180
37	1,099	662	283	38	25	20	82	1,166	588	503	41	22	35	97	79	46	55	180
38	1,098	661	281	38	25	20	82	1,164	586	501	41	22	35	97	79	46	54	180
39 40	1,097	659	280 279	38 40	∠4 25	∠∪ 20	82 86	1,163	583	499 496	41 42	22 23	35 36	97 101	79 82	46 48	54 56	179
41	1,095	658	278	40	25	20	85	1,160	581	494	42	22	36	100	82	48	56	186
42	1,094	657	277	40	25	20	85	1,158	579	492	42	22	36	100	82	48	56	185
43	1,093	656 655	275	40 40	25 25	20	85 85	1,156	577 574	489 486	42	22	35	100	82 82	48 48	55	185 184
45	1,091	654	272	40	25	20	85	1,152	572	484	42	22	35	99	81	47	55	184
46	1,090	652	271	40	25	20	84	1,150	570	481	42	22	35	99	81	47	55	183
47	1,089	651	269	40	25	20	84	1,148	567	478	42	22	35	98	81	47	54	182
48 49	1,087	649 648	267	39 39	25 25	19 19	84 84	1,145	564 562	474	42 41	22	34 34	98 97	81	47	54 53	182 181
50	1,084	646	263	41	26	20	87	1,140	559	467	43	22	35	101	84	48	55	188
51	1,083	644	260	41	26	20	87	1,137	555	463	43	22	35	100	84	48	55	187
52	1,081	642 639	258	41 41	26 26	19 19	86 86	1,135	552 548	459 455	43 43	22	35	100 99	84 84	48 48	54 54	186 185
54	1,077	637	252	41	26	19	85	1,128	545	450	43	22	34	99	83	48	53	184
55	1,074	634	249	41	26	19	85	1,124	540	445	43	22	34	98	83	47	52	183
56	1,072	632	246	41	25	19	85	1,121	536	440	42	22	33	97	83	47	52	182
58	1,066	625	238	40	25	18	83	1,110	526	434	42	21	32	96	82	46	50	179
59	1,063	622	234	40	25	18	83	1,107	521	421	42	21	32	95	82	46	50	178
60	1,060	618	229	41	26	18	84	1,102	515	414	43	21	32	96	84	47	50	181
61	1,056	614 609	224	41 41	25 25	17 17	84 83	1,097	509 502	407 399	43 47	21 21	32 31	95 94	84 83	46 46	49 48	179 177
63	1,048	604	212	41	25	16	82	1,084	495	390	42	20	30	93	83	45	47	175
64	1,043	599	206	40	25	16	81	1,078	487	380	42	20	30	91	82	45	45	173
65	1,038	593 597	199	40 40	24	15 15	80	1,070	478	370	42	20 10	29 29	90 8°	82 91	44	44 12	170 169
67	1,027	580	183	40	24	14	78	1,054	460	347	41	19	27	87	81	43	41	165
68	1,020	572	173	40	24	13	77	1,045	449	335	41	19	26	85	80	42	39	162
69	1,013	564	163	39	23	13	75	1,035	438	321	40	18	25	83	79	41	38	158
70	1,005 996	554 544	152 140	41 41	∠4 24	12	78 76	1,024	425 412	306 290	42 41	19 18	25 24	85 83	83 82	43 42	38 35	159
72	986	533	127	40	23	10	74	1,000	398	273	41	17	22	81	81	41	33	155
73	976	521	112	40	23	9	72	987	382	254	40	17	21	78	80	39	30	150
74	964 951	508	96 79	39	22	8 6	69 67	972	366	234	40 20	16 15	19 17	75	79 70	38 37	27	144 139
76	937	477	59	38	22	5	64	940	329	189	38	14	15	68	77	35	24	132
77	922	460	37	38	20	3	61	921	308	164	38	13	13	65	75	33	16	125
78	905	440	14	37	19	1	57	902	286	137	37	12	11	61	74	32	12	118
79 80	887 866	419 396		36 39	18 19		55 57	881	262	108 77	36 38	11 11	9	56 56	72	30 30	9	111 113
81	844	371		38	18		55	835	209	44	37	10	4	51	75	27	4	106
82	820	343		36	16		53	810	180	8	36	9	1	45	72	25	1	98
83	794	313		35	15		50	783	149		35	7 6		42	70	22		92 86
	207	200		54	12		4/	/34	110		54	0		37	00	19		00
Total				2,571	1,559	1,018	5,148				2,675	1,287	1,897	5,858	5,246	2,846	2,915	11,007

Estimating the Number of Deaths and QALYs Lost Attributable to e-Cigarette Use – With Intervention

Based on the above assumptions, an intervention in which all screened children / youth ages 5 – 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years would reduce the number of deaths and QALYs lost between the ages of 19 and 84 attributable to e-cigarette use from 1,695 / 31,943 (see Table 12) to 1,136 / 23,031 (see Table 17), a reduction of 559 deaths (33.0%) and 8,912 QALYs lost (27.9%).

			Tabl	e 17:	Esti	imat	ed De	aths	and (QALYs	Lost	Due	e to e	e-Ciga	rette	Use			
							Betw	een t	he Ag	ges of	19 a	nd 8	4						
					\A/:+	In a	British	Colu	mbia I	Birth C	ohort	of 4	0,000) antion					
			Fe	male	VVIt	n a Cn	lia / Yo	utn Sc	reenin	g Progn A	am / E Aales	sriet I	nterve	ention		Total	Popul	ation	
1.00	C-	Cig	Alivo	Dootho	e-Cig	1.71	OALVe	C-	Cig	Alivo	Deaths	e-Cig	I VI	OALVE	e-(Cig		OALVe	Total
19	1,047	0.0	6,574	0.0	66.4	0	240	1,619	0.0	6,690	0.0	61.4	0	179	13,263	0	0	419	419
20	1,247	0.0	5,645	0.0	65.4	0	173	1,852	0.0	5,867	0.0	60.5	0	137	11,513	0	0	311	311
21	1,447	0.0	4,717 3,789	0.0	63.5	0	88	2,086	0.0	5,045 4,223	0.0	59.5 58.6	0	79	9,762 8,011	0	0	230 167	230 167
23	1,848	0.0	2,860	0.0	62.5	0	59	2,554	0.0	3,401	0.0	57.7	0	58	6,261	0	0	117	117
24	2,048	0.0	1,932	0.0	60.5	0	36	2,788	0.0	2,578	0.0	55.8	0	40	4,510	0	0	76	76
26	2,048	0.0	1,932	0.0	59.6	0	36	2,788	0.0	2,578	0.0	54.8	0	40	4,510	0	0	76	76
27	2,048 2,048	0.0	1,932 1,932	0.0	58.6 57.6	0	36 36	2,788	0.0	2,578 2,578	0.0	53.9 53.0	0	40 40	4,510 4,510	0	0	76 76	76 76
29	2,048	0.0	1,932	0.0	56.6	0	36	2,788	0.0	2,578	0.0	52.1	0	40	4,510	0	0	76	76
30 31	2,048 2.048	0.0 0.0	1,932 1.932	0.0 0.0	55.7 54.7	0	37 37	2,788	0.0 0.0	2,578 2.578	0.0 0.0	51.1 50.2	0	41 41	4,510 4.510	0	0	78 78	78 78
32	2,048	0.0	1,932	0.0	53.7	0	37	2,788	0.0	2,578	0.0	49.3	0	41	4,510	0	0	78	78
33 34	2,048 2.048	0.0 0.0	1,932 1,932	0.0	52.8 51.8	0	37 37	2,788	0.0 0.0	2,578 2.578	0.0	48.4 47.4	0	41 41	4,510 4,510	0	0	78 78	78 78
35	2,048	0.0	1,932	0.0	50.8	0	37	2,788	0.0	2,578	0.0	46.5	0	41	4,510	0	0	78	78
36	2,046	2.5	1,931	0.9	49.9 48 0	43	37	2,783	5.1	2,577	1.8	45.6	80 80	41	4,508	3	122	78 79	201
38	2,043	2.7	1,929	0.9	47.9	45	37	2,772	5.4	2,573	1.8	43.7	81	41	4,502	3	124	78	202
39	2,038	2.8	1,928	1.0	47.0	47	37	2,766	5.6	2,571	1.9	42.8	82	41	4,499	3	129	78	207
40	2,035	2.9 3.1	1,927	1.0	46.0 45.1	47 49	38 38	2,760	5.8 6.0	2,569 2,567	2.0 2.1	41.9 41.0	84 85	43 43	4,496 4,493	3	131 134	81 81	212 214
42	2,028	3.3	1,925	1.2	44.1	51	38	2,748	6.3	2,565	2.2	40.1	86	42	4,490	3	138	81	219
43	2,025	3.5	1,924	1.2	43.1 42.2	53 55	38	2,742	6.5 6.8	2,563	2.3	39.1 38.2	88 90	42 42	4,486	3	141 145	81 81	222 226
45	2,017	4.0	1,921	1.4	41.2	58	38	2,728	7.1	2,558	2.5	37.3	92	42	4,479	4	150	80	230
46	2,013	4.3	1,919 1 918	1.5 1.6	40.3 39.3	61 63	38 38	2,720	7.5 7.8	2,555	2.6	36.4	94 97	42	4,475	4	155 160	80 80	235
48	2,003	4.9	1,916	1.7	38.4	66	38	2,713	8.2	2,555	2.9	34.6	99	42	4,466	5	165	80	240
49	1,998	5.2	1,914	1.8	37.4	69	38	2,696	8.8	2,547	3.1	33.7	103	42	4,461	5	172	80	252
50	1,993 1,987	5.6 6.0	1,912 1,910	2.0	36.5 35.6	72 76	40 39	2,686	9.2 9.8	2,543 2,540	3.2 3.4	32.8 31.9	106	43 43	4,456	5	178 185	83 83	261 268
52	1,980	6.4	1,908	2.3	34.6	79	39	2,666	10.5	2,536	3.7	31.0	114	43	4,444	6	193	83	276
53	1,973 1,966	6.9 7.4	1,905 1,903	2.5 2.7	33.7 32.8	83 87	39 39	2,655	11.2 11.9	2,532	3.9 4.2	30.2 29.3	119 123	43 43	4,438	6 7	202 210	82 82	284 292
55	1,958	8.0	1,900	2.9	31.9	92	39	2,630	12.7	2,524	4.5	28.4	128	43	4,423	7	220	82	301
56	1,949	8.6	1,897	3.1	30.9	96 101	39	2,617	13.6	2,519	4.8	27.5	133	43	4,416	8	229	82 91	311
58	1,940	10.1	1,890	3.4	29.1	101	39	2,586	15.6	2,508	5.6	25.8	144	42	4,398	9	250	81	331
59	1,919	11.0	1,886	4.0	28.2	112	39	2,570	16.8	2,502	6.0	25.0	150	42	4,388	10	262	81	343
61	1,907	12.9	1,881	4.3 4.7	27.3	118	39	2,552	18.0 19.3	2,496 2,489	6.5 7.0	24.1	163	43 43	4,377	11	274	82 82	357
62	1,880	14.0	1,872	5.1	25.5	131	39	2,512	20.8	2,481	7.6	22.5	170	42	4,353	13	301	81	382
63	1,865 1.848	15.2 16.6	1,866 1.860	5.6 6.2	24.6 23.8	138 146	39	2,489	22.4 24.1	2,473	8.2 8.9	21.7	1//	42 42	4,339	14 15	315 331	81 80	396 411
65	1,830	18.1	1,853	6.7	22.9	154	39	2,439	25.9	2,454	9.6	20.1	192	41	4,307	16	347	80	426
66	1,810	19.8 21.6	1,846 1,838	7.4 8.1	22.0	163 172	38	2,411	28.0	2,444	10.4 11 3	19.3 18.5	201	41 40	4,290	18 19	364 382	79 78	443 460
68	1,765	23.6	1,829	9.0	20.3	183	38	2,349	32.5	2,435	12.3	17.7	218	40	4,249	21	400	78	478
69	1,739	25.8	1,819	9.9	19.5	193	37	2,313	35.1	2,407	13.4	17.0	227	39	4,226	23	420	77	497
70	1,680	28.5 31.0	1,796	10.9	17.9	204	39	2,276	40.8	2,392	14.0	15.5	237	41 40	4,200	28	441	80 79	541
72	1,646	34.0	1,782	13.5	17.1	230	38	2,191	44.1	2,359	17.3	14.8	256	39	4,141	31	486	78	563
73	1,609	37.3 41.0	1,751	15.0 16.7	16.3 15.5	243 258	37	2,143	47.5 51.3	2,340	18.9 20.7	14.1 13.4	266	39 38	4,107	34 37	510	76 75	586 610
75	1,523	45.0	1,732	18.6	14.7	274	36	2,037	55.2	2,297	22.7	12.7	288	37	4,029	41	561	73	634
76	1,473 1 419	49.4 54 2	1,711 1 688	20.8 23 3	14.0 13.2	290 309	35	1,977	59.5 64.0	2,272	24.8 27.2	12.0 11.4	298 309	36 34	3,983	46 51	589 618	71 69	660 687
78	1,360	59.5	1,662	26.2	12.5	328	33	1,845	68.7	2,245	29.8	10.8	321	33	3,877	56	648	66	715
79 90	1,294	65.3 71 5	1,632	29.5 32 /	11.8	349 372	33 36	1,771	73.7	2,182	32.7	10.1 o =	332 3/12	32 32	3,814	62 69	680 714	64 69	744 782
81	1,144	78.3	1,561	37.9	10.5	396	36	1,608	84.2	2,140	39.5	9.0	354 354	32 30	3,745	77	750	66	816
82	1,059	85.6	1,518	43.2	9.8	424	36	1,518	89.7	2,063	43.5	8.4	365	28	3,581	87	788	64	852
83	966 864	93.3 101.6	1,468 1,411	49.5 57.1	9.2 8.6	454 490	36 37	1,423 1,322	95.1 100.6	2,016 1,963	47.8 52.7	7.9 7.3	376 386	27 26	3,484 3,374	97 110	830 876	63 63	893 939
Total		1,184		521	15.4	8,015	2,972		1,465		616	14.7	9,058	2,987		1,136	17,072	5,959	23,031

• Other assumptions used in assessing the clinically preventable burden are detailed in the Reference Document.

Summary of CPB – Males and Females

Based on these assumptions, the CPB associated with an intervention in which all screened children and youth ages 5 - 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years is 22,935 QALYs (Table 18, row *aw*). The CPB of 22,935 represents the gap between no coverage and the 'best in the world' coverage.

Table 1	8: CPB of Interventions for Tobacco Use Prevention a	nd Cessati	on in Children
	and Youth in a B.C. Birth Cohort of 40,0	00	
Row Label	Variable	Base case	Data Source
а	Age to start screening	5	V
b	Age to stop screening / brief intervention	17	V
	Without an Adolescent Screening Program / Brief Intervention		
	Prevalence of female cigarette smokers at age 24, by smoking intensity		
с	Light	1,411	Table 7
d	Moderate	851	Table 7
е	Heavy	365	Table 7
f	Total	2,627	= c + d + e
	Prevalence of male cigarette smokers at age 24, by smoking intensity		
g	Light	1,437	Table 7
h	Moderate	727	Table 7
i	Heavy	623	Table 7
j	Total	2,788	= g + h + i
k	Premature deaths in female cigarette smokers	1,519	Table 10
	Life years lost due to premature deaths	26,043	Table 10
m	Premature deaths in male cigarette smokers	1,801	Table 10
n	Life years lost due to premature deaths	29,421	Table 10
0	QALYs lost due to cigarette smoking while alive (females)	6,602	Table 11
р	QALYs lost due to cigarette smoking while alive (males)	7,202	Table 11
q	Premature deaths in female e-cigarette users	681	Table 12
r	Life years lost due to premature deaths	10,484	Table 12
S	Premature deaths in male e-cigarette users	1,014	Table 12
t	Life years lost due to premature deaths	14,600	Table 12
u	QALYs lost due to e-cigarette use while alive (females)	3,053	Table 12
v	QALYs lost due to e-cigarette smoking while alive (males)	3,806	Table 12
W	Total QALYS Lost - Females	46,183	=1+0+r+u
X	Total QALYS Lost - Males	55,029	= n + p + t + v
	With an Adolescent Screening Program / Brief Intervention		
	Prevalence of remaie smokers at age 24, by smoking intensity	1 100	Table 14
У	Light	1,100	Table 14
2	Moderate	284	Table 14
dd	Total	204	
au	Provalence of male smokers at age 24, by smoking intensity	2,048	- y + 2 + dd
20	Light	1 160	Table 14
ad	Moderate	592	Table 14
30	Heavy	507	Table 14
ae	Total	2 267	
20	Premature deaths in female cigarette smokers	1 18/	Table 15
ab	Life years lost due to premature deaths	20 308	Table 15
ai	Premature deaths in male cigarette smokers	1 465	Table 15
ai	Life years lost due to premature deaths	23 931	Table 15
ak	OALY's lost due to cigarette smoking while alive (females)	5 148	Table 16
al	OALY's lost due to cigarette smoking while alive (males)	5,858	Table 16
am	Premature deaths in female e-cigarette users	521	Table 17
an	Life years lost due to premature deaths	8.015	Table 17
a0	Premature deaths in male e-cigarette users	616	Table 17
ap	Life years lost due to premature deaths	9,058	Table 17
aq	QALYs lost due to e-cigarette use while alive (females)	2,972	Table 17
ar	QALYs lost due to e-cigarette smoking while alive (males)	2,987	Table 17
as	Total QALYs Lost - Females	36.443	= ah + ak + an + an
at	Total QALYs Lost - Males	41.834	= aj + al + ap + ar
	QALYs Gained With Screening / Brief Intervention	,	
au	Total QALYs gained - Females (CPB)	9,740	= w - as
av	Total QALYs gained - Males (CPB)	13,195	= x - at
aw	Total QALYs gained (CPB)	22,935	= au + av

v = Estimates from the literature

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CPB = 5,910**.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CPB** = **41,077.**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CPB = 18,681.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CPB = 26,719.
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CPB = 10,377.
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CPB = 37,486.
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CPB = 21,476.
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CPB = 24,452.
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CPB = 16,707.
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CPB = 27,266.

Summary of CPB – Females Only

Based on these assumptions, the CPB associated with an intervention in which female screened children and youth ages 5 - 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years is 9,740 QALYs (Table 18, row *au*). The CPB of 9,740 represents the gap between no coverage and the 'best in the world' coverage.

We also modified a number of major assumptions and recalculated the CPB as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CPB = 2,438**.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CPB** = **17,995**.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CPB = 7,873.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CPB = 11,423.

- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CPB = 4,311.
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CPB = 16,316.
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CPB = 9,123.
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CPB = 10,381.
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CPB = 7,932.
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CPB = 11,078.

Summary of CPB – Males Only

Based on these assumptions, the CPB associated with an intervention in which male screened children and youth ages 5 - 17 would receive a brief intervention re: cigarette smoking / e-cigarette use initiation and 45% of screened cigarette smokers and 67% of screened e-cigarette users receive a brief cessation intervention every two years is 13,195 QALYs (Table 18, row *av*). The CPB of 13,195 represents the gap between no coverage and the 'best in the world' coverage.

We also modified a number of major assumption and recalculated the CPB as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CPB = 3,473.**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CPB** = **23,083**.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CPB = 10,808.
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CPB = 15,297.
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CPB = 6,066.
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CPB = 21,171.
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CPB = 12,353.
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CPB = 14,071.
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CPB = 8,774.
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CPB = 16,188.

Modelling Cost-Effectiveness

In this section, we model CE associated with asking children and youth or their parents about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to prevent and/or treat tobacco smoking and e-cigarette use among children and youth.

In calculating CE, we made the following assumptions:

Screening and Brief Behavioural Interventions to Reduce the Initiation of Tobacco Smoking

- We assumed that screening for cigarette smoking / e-cigarette use in children / youth would take place annually in 92%⁷⁶ and 89%⁷⁷ of those with a primary health care visit in a given year. Furthermore, we have assumed that the screening would require 20% of a PCP office visit.
- The USPSTF reviewed 14 studies assessing the effectiveness of a brief intervention to **reduce the initiation of tobacco smoking**. Follow-up for these studies ranged from 6 to 36 months with the majority (57%) at 12 months.⁷⁸
- In the 14 studies, three interventions took place in primary care clinics, two in dental clinics, 10 in homes and one in a school. Eight trials targeted the youth to receive the intervention, two targeted the parent and four targeted both child and parent. Print materials were used most commonly to deliver part or all of the intervention followed by face-to-face encounters with a counselor, health educator, or primary care medical or dental provider. The duration of the interventions ranged from 7 weeks to 25 months with a mean number of six contacts (ranging from 3-15).⁷⁹
- We have assumed that an intervention to **reduce the initiation of tobacco smoking** would be required seven times between the ages of 5 and 17 for maximum effect, approximately once every two years. Furthermore, we have assumed that the intervention would require 50% of a PCP office visit for the first four interventions between the ages of 5 and 12 and then a full PCP office visit for the final three interventions between the ages of 13 and 17.
- The cost of an office visit to a General Practitioner (GP) in BC is estimated at \$35.97.⁸⁰

⁷⁶ LeLaurin J, Theis R, Thompson L et al. Tobacco-related counselling and documentation in adolescent primary care practice: Challenges and opportunities. *Nicotine & Tobacco Research*. 2020; 22(6): 1023-9.

⁷⁷ Matheus C, Hein N, Narahari P et al. Improving standardized screening for e-cigarette and vaping use among adolescents. *Paediatrics*. 2021; 147 (3-Meeting Abstract): 1002.

⁷⁸ Selph S, Patnode C, Bailey S et al. Primary Care Interventions for Prevention and Cessation of Tobacco Use in Children and Adolescents: A Systematic Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 185. AHRQ Publication No. 19-05254-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2020.

⁷⁹ Selph S, Patnode C, Bailey S et al. Primary Care Interventions for Prevention and Cessation of Tobacco Use in Children and Adolescents: A Systematic Review for the U.S. Preventive Services Task Force. Evidence Synthesis No. 185. AHRQ Publication No. 19-05254-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2020.

⁸⁰ Ministry of Health. *Medical Services Commission Payment Schedule*. 2021. Available at <u>https://www2.gov.bc.ca/assets/gov/health/practitioner-pro/medical-services-plan/msc-payment-schedule-may-2021.pdf</u>. Accessed September 2022.

- Patient time costs resulting from receiving, as well as travelling to and from, a service are valued based on the average hourly wage rate in BC in 2022 (\$31.49⁸¹) plus 18% benefits for an average cost per hour of \$37.16. In the absence of specific data on the amount of time required, we assume two hours per service.
- Based on these assumptions, the cost of asking children and youth between the ages of 5 and 17 (or their parents) about tobacco use by the child or youth and offering brief information and advice, as appropriate, during primary care visits to prevent tobacco smoking and e-cigarette use among children and youth in a BC cohort of 40,000 is \$21.4 million, \$11.2 million in females and \$10.2 million in males (see Table 19).

Table 19: Estimated Cost of Interventions to Reduce Initiation of Cigarette Smoking and E-Cigarette UseBetween the Ages of 5 and 17

		In a British Columbia Bi														ot 4	40,000)								
						Fe	males												М	ales						
						# of													# of							
		See	Cig E	E-Cig	# of	Interven	PCP			(Cost				Se	e Ci	ig E-Cig	# of	Interven	PCP			(Cost		
Age	Pop.	PHP	Scree	ned	Screens	tions	Visits		РСР	Pa	tient		Total	Pop.	PH	P So	creened	Screens	tions	Visits		PCP	Pat	tient		Total
5	19,922	70%	92% 8	89%	12,830	12,830	8,981	\$	323,041	\$ E	667,456	\$	990,497	19,911	. 689	6 92	2% 89%	12,456	12,456	8,719	\$	313,635	\$ 6	548,021	\$	961,656
6	19,920	70%	92% 8	89%	12,829		2,566	\$	92,290	\$ 1	190,686	\$	282,976	19,909	68%	6 92	2% 89%	12,455		2,491	\$	89,604	\$ 1	85,136	\$	274,739
7	19,919	70%	92% 8	89%	12,828	12,828	8,979	\$	322,992	\$ 6	667,355	\$	990,347	19,908	68%	6 92	2% 89%	12,454	12,454	8,718	\$	313,590	\$ 6	647,930	\$	961,521
8	19,918	70%	92% 8	89%	12,827		2,565	\$	92,278	\$ 1	190,661	\$	282,939	19,907	68%	6 92	2% 89%	12,454		2,491	\$	89,591	\$ 1	85,110	\$	274,701
9	19,917	70%	92% 8	89%	12,826	12,826	8,978	\$	322,953	\$ 6	667,275	\$	990,228	19,906	68%	6 92	2% 89%	12,453	12,453	8,717	\$	313,553	\$ 6	647,852	\$	961,405
10	19,915	70%	92% 8	89%	12,826		2,565	\$	92,267	\$1	190,638	\$	282,905	19,904	68%	6 92	2% 89%	12,452		2,490	\$	89,581	\$ 1	.85,089	\$	274,670
11	19,914	70%	92% 8	89%	12,825	12,825	8,977	\$	322,914	\$ 6	667,195	\$	990,109	19,903	68%	6 92	2% 89%	12,451	12,451	8,716	\$	313,515	\$ 6	647,774	\$	961,289
12	19,913	70%	92% 8	89%	12,824		2,565	\$	92,256	\$1	190,616	\$	282,871	. 19,902	68%	6 92	2% 89%	12,451		2,490	\$	89,570	\$ 1	.85,067	\$	274,637
13	19,911	70%	92% 8	89%	12,823	12,823	15,388	\$	553,489	\$1,1	143,601	\$	1,697,091	. 19,900	68%	6 92	2% 89%	12,450	12,450	14,940	\$	537,378	\$1,1	.10,313	\$ 3	1,647,692
14	19,910	70%	92% 8	89%	12,822		2,564	\$	92,240	\$ 1	190,583	\$	282,823	19,898	68%	6 92	2% 89%	12,448		2,490	\$	89,554	\$ 1	.85,034	\$	274,588
15	19,907	79%	92% 8	89%	14,469	14,469	17,362	\$	624,527	\$1,2	290,376	\$	1,914,903	19,896	63%	6 92	2% 89%	11,531	11,531	13,838	\$	497,745	\$1,0	28,424	\$ 3	1,526,170
16	19,904	79%	92% 8	89%	14,466		2,893	\$	104,070	\$ 2	215,026	\$	319,096	19,891	. 63%	6 92	2% 89%	11,529		2,306	\$	82,939	\$ 1	71,366	\$	254,305
17	19,900	79%	92% 8	89%	14,463	14,463	17,356	\$	624,282	\$1,2	289,871	\$	1,914,153	19,885	63%	% 92	2% 89%	11,525	11,525	13,830	\$	497,475	\$1,0	27,866	\$:	1,525,341
Total				-	171,657	93,063	101,740	\$3	,659,599	\$7,5	561,340	\$:	11,220,939					159,111	85,321	92,236	\$3	3,317,730	\$6,8	54,983	\$10),172,713

Screening and Brief Behavioural Interventions to Increase Tobacco Smoking Cessation

- For modelling purposes, we have assumed that 45%⁸² and 67%⁸³ of those found positive for cigarette / e-cigarette use would receive counselling to quit.
- In the systematic review by the CTFPHC on the effectiveness of a brief intervention to **increase smoking cessation**, a significant effect was observed in 2 of the 3 RCTs included. In the study by Hollis et al, the interventions consisted of an individually tailored intervention based on the smoking status and stage of change of the individual. It included a 30-second clinician advice message, a 10-minute interactive computer program, a 5-minute motivational interview, and up to two 10-minute telephone or in person booster sessions.⁸⁴ In the study by Pbert and colleagues, the

⁸¹ BC Stats. *Earning & Employment Trends – August 2022*. Available at

https://www2.gov.bc.ca/assets/gov/data/statistics/people-population-

community/income/earnings_and_employment_trends_data_tables.pdf. Accessed September 2022.

⁸² Merianos A, Mahabee-Gittens E. Screening, counselling, and health care utilization among a national sample of adolescent smokers. *Clinical Paediatrics*. 2020; 59(4-5): 467-75.

⁸³ Golden T, VanFrank B, Courtney-Long E. E-cigarette screening and clinical intervention behaviours among pediatric primary care providers, DocStyles 2021. *Paediatrics*. 2022; 149: 740.

⁸⁴ Hollis J, Polen M, Whitlock E et al. Teen Reach: Outcomes from a randomized, controlled trial of a tobacco reduction program for teens seen in primary medical care. *Pediatrics*. 2005; 115(4): 981-9.

intervention consisted of brief counselling by the paediatric provider followed by one visit and four telephone calls by older peer counsellors (aged 21 to 25 years).⁸⁵

- In their model of the cost-effectiveness of brief clinician tobacco counselling for youth, Maciosek and colleagues estimated a cost of \$35 per person (in 2012 USD). We converted this to \$36 in 2022 CAD. These costs include 1 minute for a brief anti-tobacco message by a physician, 20 minutes with a health educator, parent time to accompany the youth and \$5 for print materials.⁸⁶
- In estimating the cost of the intervention, we have assumed the equivalent of two visits to a PCP (at a cost of 2*\$35.97 = \$71.94) plus four ten-minute follow-up telephone calls by a nurse. The value of the nursing time is estimated based on the wage rate for a Level 3 RN with four years of experience (\$40.41 / hour).⁸⁷ The total nursing costs are based on the wage rate plus 18% for benefits and 40% for non-productive time (i.e. vacation, education leave, statutory holidays, coffee breaks, etc.) for 40 (0.67 of an hour) minutes of time ((\$40.41+\$7.27+\$16.16) * 0.67) or \$42.77). The total cost of the brief intervention would thus be **\$114.71** (\$71.94 + \$42.77).
- Patient time costs are based on receiving as well as travelling to and from the two visits, assuming two hours per visit plus the 40 minutes of interaction time with the nurse.
- Based on these assumptions, the cost of offering brief information and advice to increase tobacco smoking cessation and e-cigarette use among children and youth in a BC cohort of 40,000 is \$5.4 million, \$2.9 million in females and \$2.5 million in males (see Table 20).

Table 20: Estimated Cost of Interventions to Increase Cigarette Smoking and E-Cigarette Use CessationBetween the Ages of 5 and 17

							Fema	les										/				Male	s						
								# of			(Cost											#of				Cost		
		Table7	See	Cig	E-Cig	Cig	E-Cig	Interven	Inte	erven						Ta	ole 7	See	Cig	E-Cig	Cig	E-Cig	Interven	In	iterven				
Age	Pop.	Cig e-Ci	g PHP	Scre	ened	Interv	ention/	tions	ti	ons	Ра	itient		Total	Pop.	Cig	e-Cig	PHP	Scre	ened	Interv	ention	tions		tions	F	Patient		Total
5	19,922		70%	92%	89%	45%	67%								19,911			68%	92%	89%	45%	67%							
6	19,920		70%	92%	89%	45%	67%								19,909			68%	92%	89%	45%	67%							
7	19,919		70%	92%	89%	45%	67%								19,908			68%	92%	89%	45%	67%							
8	19,918	29	70%	92%	89%	45%	67%	8	\$	975	\$	1,471	\$	2,446	19,907	46		68%	92%	89%	45%	67%	13	\$	1,487	\$	2,245	\$	3,732
9	19,917	44	70%	92%	89%	45%	67%	13	\$	1,462	\$	2,207	\$	3,669	19,906	69		68%	92%	89%	45%	67%	19	\$	2,230	\$	3,367	\$	5,597
10	19,915	66	70%	92%	89%	45%	67%	19	\$	2,193	\$	3,311	\$	5,504	19,904	104		68%	92%	89%	45%	67%	29	\$	3,346	\$	5,050	\$	8,396
11	19,914	88	70%	92%	89%	45%	67%	25	\$	2,924	\$	4,414	\$	7,338	19,903	138		68%	92%	89%	45%	67%	39	\$	4,461	\$	6,734	\$	11,195
12	19,913	147	70%	92%	89%	45%	67%	42	\$	4,873	\$	7,357	\$	12,230	19,902	230		68%	92%	89%	45%	67%	65	\$	7,434	\$	11,223	\$	18,658
13	19,911	249 2,70	8 70%	92%	89%	45%	67%	1,203	\$ 1	.37,944	\$ 3	208,240	\$	346,184	19,900	391	2,448	68%	92%	89%	45%	67%	1,103	\$	126,491	\$	190,950	\$	317,441
14	19,910	388 3,39	4 70%	92%	89%	45%	67%	1,529	\$ 1	75,441	\$ 2	264,845	\$	440,287	19,898	610	3,149	68%	92%	89%	45%	67%	1,448	\$	166,154	\$	250,825	\$	416,979
15	19,907	535 4,08	1 79%	92%	89%	45%	67%	2,097	\$ 2	40,591	\$ 3	363,195	\$	603,786	19,896	840	3,850	63%	92%	89%	45%	67%	1,665	\$	191,028	\$	288,374	\$	479,402
16	19,904	660 4,76	7 79%	92%	89%	45%	67%	2,462	\$2	82,359	\$4	426,248	\$	708,607	19,891	1,036	4,550	63%	92%	89%	45%	67%	1,980	\$	227,085	\$	342,807	\$	569,892
17	19,900	733 5,45	4 79%	92%	89%	45%	67%	2,809	\$3	22,202	\$ 4	486,395	\$	808,597	19,885	1,151	5,251	63%	92%	89%	45%	67%	2,273	\$	260,732	\$	393,600	\$	654,333
Total								10,208	\$1,1	70,965	\$1,7	767,682	\$2	,938,647									8,634	\$	990,448	\$1	,495,176	\$ 2	2,485,624

⁸⁵ Pbert L, Flint A, Fletcher K et al. Effect of a pediatric-based smoking prevention and cessation intervention for adolescents: A randomized, controlled trial. *Pediatrics*. 2008; 121(4): e738-47.

⁸⁶ Maciosek M, LaFrance A, Dehmer S et al. Health benefits and cost-effectiveness of brief clinician tobacco counseling for youth and adults. *Annals of Family Medicine*. 2017; 15(1): 37-47.

⁸⁷ 2019 - 2022 Provincial Collective Bargaining Agreement between the Health Employers Association of BC and the Nurses' Bargaining Association. Available online at <u>https://www.bcnu.org/Contracts-</u>Bargaining/Documents/nba-pca_2019-2022.pdf. Accessed October 2022.

Costs Avoided Due to Reduced Tobacco Smoking

- Tobacco smoking is associated with excess *annual medical care costs* (e.g., hospitalization, physician, drug, etc.). Research in BC identified these costs average \$1,358 per year: \$893 per year for light tobacco smoking (less than 10 cigarettes per day), \$1,576 per year for moderate tobacco smoking (10 to 19 cigarettes per day) and \$2,332 per year for heavy tobacco smoking (20 or more cigarettes per day). The equivalent costs for females are \$1,199 / \$803 / \$1,367 / \$2,359 and for males are \$1,466 / \$956 / \$1,752 / \$2,321.⁸⁸ All costs are in 2022 Canadian dollars.
- We multiplied these excess annual medical care costs by the number of male or female light, moderate or heavy smokers who were alive between the ages of 19 and 84 assuming no child/youth screening and brief intervention program. This total cost over the lifetime of the cohort was then redistributed by age and sex based on the fact that excess annual medical care costs increase substantially as a current smoker ages.⁸⁹ As per Maciosek and colleagues, we also assumed that these excess costs would only start at age 35.⁹⁰ This latter assumption is likely conservative as there is evidence that adolescent smokers use more health services than adolescent neversmokers. For example, Merianos et al suggest that adolescent current smokers are 80% more likely (aOR = 1.80, 95% CI = 1.47-2.22) and 2.95 times more likely (95% CI = 2.15-4.05) to have had an ED visit or an overnight hospital stay within the past 12 months than adolescent never smokers.⁹¹
- Wang and colleagues have estimated the annual excess medical care costs of exclusive e-cigarette use in adults ages 18 and older in the US to be \$1,796 (in 2018 USD). They compare this with the estimated annual excess medical care costs of \$5,602 (in 2018 USD) attributed to conventional cigarette smoking in the US.⁹² That is, in the US, annual medical care costs associated with exclusive e-cigarettes use are approximately one-third (32.1%) that associated with conventional cigarette use. For modelling purposes, we have assumed that annual medical care costs associated with exclusive e-cigarette use in BC would be 32.1% of the \$1,358 (see first bullet point above) attributable to conventional cigarette smoking, or \$436. These costs would begin at age 19.
- Based on these assumptions, lifetime total excess medical care costs attributable to conventional and e-cigarette use in a BC birth cohort of 40,000 *without* a child/youth screening and brief intervention program would be \$576.4 million, \$258.2 million in females and \$318.2 million in males (see Table 21).

⁸⁸ H. Krueger & Associates Inc. *The Economic Burden of Risk Factors in British Columbia: Excess Weight, Tobacco Smoking, Alcohol Use, Physical Inactivity and Low Fruit and Vegetable Consumption.* 2017. Vancouver, B.C.: Provincial Health Services Authority, Population and Public Health Program.

⁸⁹ Maciosek M, Xu X, Butani A et al. Smoking-attributable medical expenditures by age, sex, and smoking status estimated using a relative risk approach. *Preventive Medicine*. 2015; 77: 162-7.

⁹⁰ Maciosek M, Xu X, Butani A et al. Smoking-attributable medical expenditures by age, sex, and smoking status estimated using a relative risk approach. *Preventive Medicine*. 2015; 77: 162-7.

⁹¹ Merianos A, Mahabee-Gittens E. Screening, counseling, and health care utilization among a national sample of adolescent smokers. *Clinical Pediatrics*. 2020; 59(4-5): 467 - 75.

⁹² Wang Y, Sung H, Lightwood J et al. Healthcare utilization and expenditures attributable to current e-cigarette use among US adults. *Tobacco Control*. 2022; doi:10.1136/tobaccocontrol-2021-057058.

Table 21: Estimated Excess Medical Care Costs

Attributable to Conventional and e-Cigarette Use

In a British Columbia Birth Cohort of 40,000

Without a Child / Youth Screening Program / Brief Intervention

			Females	5				Males		
	Annual Co	sts by Smokin	ng Intensity			Annual Co	sts by Smokin	g Intensity		
Age	Light	Mod	Heavy	E-CigUse	Total \$	Light	Mod	Heavy	E-CigUse	Total \$
19 - 34				\$25,506,905	\$25,506,905				\$29,140,035	\$29,140,035
35	\$317,933	\$310,222	\$275,260	\$1,095,408	\$1,998,823	\$359,008	\$300,702	\$349,098	\$1,384,276	\$2,393,084
36	\$317,933	\$310,222	\$275,260	\$1,094,653	\$1,998,068	\$359,008	\$300,702	\$349,098	\$1,382,001	\$2,390,810
37	\$317,933	\$310,222	\$275,260	\$1,093,865	\$1,997,280	\$359,008	\$300,702	\$349,098	\$1,379,656	\$2,388,464
38	\$317,933	\$310,222	\$275,260	\$1,093,032	\$1,996,448	\$359,008	\$300,702	\$349,098	\$1,377,225	\$2,386,033
39	\$317,933	\$310,222	\$275,260	\$1,092,166	\$1,995,582	\$359,008	\$300,702	\$349,098	\$1,374,708	\$2,383,516
40	\$317,933	\$310,222	\$275,260	\$1,091,256	\$1,994,671	\$359,008	\$300,702	\$349,098	\$1,372,106	\$2,380,915
41	\$317,933	\$310,222	\$275,260	\$1,090,279	\$1,993,695	\$359,008	\$300,702	\$349,098	\$1,369,391	\$2,378,199
42	\$317,933	\$310,222	\$275,260	\$1,089,247	\$1,992,662	\$359,008	\$300,702	\$349,098	\$1,366,562	\$2,375,370
43	\$317,933	\$310,222	\$275,260	\$1,088,148	\$1,991,563	\$359,008	\$300,702	\$349,098	\$1,363,619	\$2,372,427
44	\$317,933	\$310,222	\$275,260	\$1,086,971	\$1,990,387	\$359,008	\$300,702	\$349,098	\$1,360,548	\$2,369,356
45	\$317,933	\$310,222	\$275,260	\$1,085,717	\$1,989,132	\$359,008	\$300,702	\$349,098	\$1,357,307	\$2,366,115
46	\$317,933	\$310,222	\$275,260	\$1,084,374	\$1,987,789	\$359,008	\$300,702	\$349,098	\$1,353,909	\$2,362,717
47	\$317,933	\$310,222	\$275,260	\$1,082,942	\$1,986,357	\$359,008	\$300,702	\$349,098	\$1,350,341	\$2,359,149
48	\$317,933	\$310,222	\$275,260	\$1,081,410	\$1,984,825	\$359,008	\$300,702	\$349,098	\$1,346,545	\$2,355,353
49	\$317,933	\$310,222	\$275,260	\$1,079,767	\$1,983,182	\$359,008	\$300,702	\$349,098	\$1,342,536	\$2,351,344
50	\$317,933	\$310,222	\$275,260	\$1,078,002	\$1,981,417	\$359,008	\$300,702	\$349,098	\$1,338,285	\$2,347,093
51	\$317,933	\$310,222	\$275,260	\$1,076,115	\$1,979,530	\$359,008	\$300,702	\$349,098	\$1,333,750	\$2,342,558
52	\$317,933	\$310,222	\$275,260	\$1,074,083	\$1,977,499	\$359,008	\$300,702	\$349,098	\$1,328,902	\$2,337,710
53	\$317,933	\$310,222	\$275,260	\$1,071,897	\$1,975,312	\$359,008	\$300,702	\$349,098	\$1,323,741	\$2,332,549
54	\$317.933	\$310.222	\$275.260	\$1.069.532	\$1.972.947	\$359.008	\$300.702	\$349.098	\$1.318.225	\$2.327.033
55	\$906,408	\$884,424	\$784,751	\$1,066,990	\$3,642,573	\$1,214,334	\$1,017,118	\$1,180,816	\$1,312,311	\$4,724,577
56	\$906.408	\$884.424	\$784.751	\$1.064.248	\$3.639.831	\$1.214.334	\$1.017.118	\$1.180.816	\$1.305.984	\$4.718.251
57	\$906.408	\$884.424	\$784.751	\$1.061.284	\$3.636.868	\$1.214.334	\$1.017.118	\$1.180.816	\$1.299.203	\$4.711.469
58	\$906.408	\$884.424	\$784.751	\$1.058.065	\$3.633.648	\$1.214.334	\$1.017.118	\$1.180.816	\$1.291.938	\$4,704,204
59	\$906.408	\$884.424	\$784.751	\$1.054.579	\$3.630.163	\$1.214.334	\$1.017.118	\$1.180.816	\$1.284.133	\$4.696.399
60	\$906.408	\$884,424	\$784.751	\$1.050.794	\$3.626.377	\$1,214,334	\$1.017.118	\$1.180.816	\$1.275.745	\$4.688.012
61	\$906.408	\$884.424	\$784.751	\$1.046.676	\$3.622.259	\$1.214.334	\$1.017.118	\$1.180.816	\$1.266.732	\$4.678.998
62	\$906.408	\$884.424	\$784.751	\$1.042.202	\$3.617.785	\$1.214.334	\$1.017.118	\$1.180.816	\$1.257.036	\$4.669.302
63	\$906.408	\$884.424	\$784.751	\$1.037.318	\$3.612.901	\$1.214.334	\$1.017.118	\$1.180.816	\$1.246.586	\$4.658.853
64	\$906.408	\$884.424	\$784.751	\$1.032.001	\$3.607.584	\$1.214.334	\$1.017.118	\$1.180.816	\$1.235.341	\$4.647.607
65	\$1.889.193	\$1.843.374	\$1.635.629	\$1.026.195	\$6.394.390	\$2,449,642	\$2.051.803	\$2.382.027	\$1.223.214	\$8,106,686
66	\$1.889.193	\$1.843.374	\$1.635.629	\$1.019.856	\$6.388.052	\$2,449,642	\$2.051.803	\$2.382.027	\$1.210.134	\$8.093.606
67	\$1,889,193	\$1.843.374	\$1.635.629	\$1.012.918	\$6.381.114	\$2,449,642	\$2.051.803	\$2.382.027	\$1,196,046	\$8.079.517
68	\$1.889.193	\$1.843.374	\$1.635.629	\$1.005.325	\$6.373.521	\$2,449,642	\$2.051.803	\$2.382.027	\$1.180.834	\$8.064.305
69	\$1,889,193	\$1.843.374	\$1.635.629	\$997.011	\$6.365.206	\$2,449,642	\$2.051.803	\$2.382.027	\$1.164.413	\$8.047.885
70	\$1,889,193	\$1.843.374	\$1.635.629	\$987.897	\$6.356.093	\$2,449,642	\$2.051.803	\$2.382.027	\$1,146,699	\$8.030.171
71	\$1,889,193	\$1.843.374	\$1.635.629	\$977.896	\$6.346.091	\$2,449,642	\$2.051.803	\$2.382.027	\$1.127.592	\$8.011.063
72	\$1,889,193	\$1,843.374	\$1.635.629	\$966.928	\$6,335.124	\$2,449.642	\$2,051.803	\$2,382.027	\$1,106.977	\$7,990.449
73	\$1,889,193	\$1,843.374	\$1.635.629	\$954.884	\$6,323.079	\$2,449.642	\$2,051.803	\$2,382.027	\$1.084.742	\$7.968.214
74	\$1,889,193	\$1,843.374	\$1.635.629	\$941.663	\$6,309.858	\$2,449.642	\$2,051.803	\$2,382.027	\$1,060.787	\$7,944.259
75	\$3.649.326	\$3.560.818	\$3.159.520	\$927.154	\$11.296.819	\$4.041.031	\$3.384.740	\$3.929.490	\$1.034.998	\$12,390,259
76	\$3.649.326	\$3.560.818	\$3,159,520	\$911.214	\$11,280,878	\$4.041.031	\$3.384.740	\$3.929.490	\$1.007.261	\$12,362,522
77	\$3,649,326	\$3,560,818	\$3,159,520	\$893,730	\$11,263,394	\$4.041.031	\$3,384,740	\$3,929,490	\$977,462	\$12,332,723
78	\$3,649.326	\$3,560.818	\$3,159.520	\$874.548	\$11,244,212	\$4.041.031	\$3,384.740	\$3,929,490	\$945.503	\$12,300.764
79	\$3.649.326	\$3,560,818	<i>40,200,020</i>	\$853,523	\$8,063,667	\$4.041.031	\$3,384,740	\$3,929,490	\$911,297	\$12,266,558
80	\$3.649.326	\$3,560,818		\$830,511	\$8,040,656	\$4.041.031	\$3,384,740	\$3,929,490	\$874,774	\$12,230,035
81	\$3,649,326	\$3,560,818		\$805 368	\$8,015,512	\$4,041,031	\$3,384,740	\$3,929,490	\$835 891	\$12,191,152
82	\$3,649 326	\$3,560,818		\$777 938	\$7,988,083	\$4,041,031	\$3,384,740	\$3,929, <u>4</u> 90	\$794 634	\$12,149,895
83	\$3,649 326	\$3,560,818		\$748 089	\$7,958,233	\$4,041,031	\$3,384,740	<i>,,,,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,	\$751 017	\$8,176,788
84	\$3,649 326	\$3,560,818		\$715 708	\$7,925,852	\$4,041,031	\$3,384,740		\$705 111	\$8,130,882
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		y, 13,700	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Total	\$70,807,922	\$69,090,601	\$42,347,092	\$75,948,282	\$258,193,897	\$84,230,211	\$70,550,654	\$74,046,311	\$89,378,059	\$318,205,235

- We then used the same approach but this time multiplied the excess annual medical care costs by the number of male or female light, moderate or heavy smokers and e-cigarette users who were alive between the ages of 19 and 84 assuming a child/youth screening and brief intervention program was in place.
- Based on these assumptions, lifetime total excess medical care costs attributable to tobacco smoking in a BC birth cohort of 40,000 *with* a child/youth screening and brief intervention program would be \$457.8 million, \$200.2 million in females and \$257.6 million in males (see Table 22).
- Total costs avoided would therefore be \$118.6 million (\$576.4 \$457.8), \$58.0 million in females (\$258.2 \$200.2) and \$60.6 million (\$318.2 \$257.6) in males.

Table 22: Estimated Excess Medical Care Costs

Attributable to Conventional and e-Cigarette Use

In a British Columbia Birth Cohort of 40,000

With a Child / Youth Screening Program / Brief Intervention

	Females				Males					
	Annual Costs by Smoking Intensity			Annual Costs by Smoking Intensity						
Age	Light	Mod	Heavy	E-CigUse	Total \$	Light	Mod	Heavy	E-CigUse	Total \$
19 - 34				\$19,525,730	\$19,525,730				\$23,283,819	\$23,283,819
35	\$247,922	\$241,909	\$214,647	\$837,383	\$1,541,861	\$292,012	\$244,587	\$283,951	\$1,107,108	\$1,927,659
36	\$247,922	\$241,909	\$214,647	\$836,806	\$1,541,284	\$292,012	\$244,587	\$283,951	\$1,105,289	\$1,925,840
37	\$247,922	\$241,909	\$214,647	\$836,203	\$1,540,681	\$292,012	\$244,587	\$283,951	\$1,103,413	\$1,923,964
38	\$247,922	\$241,909	\$214,647	\$835,567	\$1,540,045	\$292,012	\$244,587	\$283,951	\$1,101,469	\$1,922,019
39	\$247,922	\$241,909	\$214,647	\$834,905	\$1,539,383	\$292,012	\$244,587	\$283,951	\$1,099,456	\$1,920,007
40	\$247,922	\$241,909	\$214,647	\$834,209	\$1,538,687	\$292,012	\$244,587	\$283,951	\$1,097,375	\$1,917,926
41	\$247,922	\$241,909	\$214,647	\$833,462	\$1,537,940	\$292,012	\$244,587	\$283,951	\$1,095,204	\$1,915,754
42	\$247,922	\$241,909	\$214,647	\$832,673	\$1,537,151	\$292,012	\$244,587	\$283,951	\$1,092,941	\$1,913,492
43	\$247,922	\$241,909	\$214,647	\$831,833	\$1,536,311	\$292,012	\$244,587	\$283,951	\$1,090,587	\$1,911,138
44	\$247,922	\$241,909	\$214,647	\$830,934	\$1,535,412	\$292,012	\$244,587	\$283,951	\$1,088,131	\$1,908,682
45	\$247,922	\$241,909	\$214,647	\$829,975	\$1,534,453	\$292,012	\$244,587	\$283,951	\$1,085,539	\$1,906,090
46	\$247,922	\$241,909	\$214,647	\$828,948	\$1,533,426	\$292,012	\$244,587	\$283,951	\$1,082,821	\$1,903,372
47	\$247,922	\$241,909	\$214,647	\$827,853	\$1,532,331	\$292,012	\$244,587	\$283,951	\$1,079,968	\$1,900,518
48	\$247,922	\$241,909	\$214,647	\$826,682	\$1,531,160	\$292,012	\$244,587	\$283,951	\$1,076,932	\$1,897,483
49	\$247,922	\$241,909	\$214,647	\$825,426	\$1,529,904	\$292,012	\$244,587	\$283,951	\$1,073,725	\$1,894,276
50	\$247,922	\$241,909	\$214,647	\$824,077	\$1,528,555	\$292,012	\$244,587	\$283,951	\$1,070,326	\$1,890,876
51	\$247,922	\$241,909	\$214,647	\$822,634	\$1,527,112	\$292,012	\$244,587	\$283,951	\$1,066,699	\$1,887,249
52	\$247,922	\$241,909	\$214,647	\$821,082	\$1,525,559	\$292,012	\$244,587	\$283,951	\$1,062,821	\$1,883,372
53	\$247,922	\$241,909	\$214,647	\$819,410	\$1,523,888	\$292,012	\$244,587	\$283,951	\$1,058,694	\$1,879,245
54	\$247,922	\$241,909	\$214,647	\$817,602	\$1,522,080	\$292,012	\$244,587	\$283,951	\$1,054,282	\$1,874,833
55	\$706,811	\$689,669	\$611,945	\$815,659	\$2,824,084	\$987,723	\$827,309	\$960,458	\$1,049,552	\$3,825,043
56	\$706,811	\$689,669	\$611,945	\$813,563	\$2,821,988	\$987,723	\$827,309	\$960,458	\$1,044,492	\$3,819,983
57	\$706,811	\$689,669	\$611,945	\$811,297	\$2,819,722	\$987,723	\$827,309	\$960,458	\$1,039,069	\$3,814,560
58	\$706,811	\$689,669	\$611,945	\$808,836	\$2,817,261	\$987,723	\$827,309	\$960,458	\$1,033,259	\$3,808,749
59	\$706,811	\$689,669	\$611,945	\$806,172	\$2,814,597	\$987,723	\$827,309	\$960,458	\$1,027,016	\$3,802,507
60	\$706,811	\$689,669	\$611,945	\$803,278	\$2,811,703	\$987,723	\$827,309	\$960,458	\$1,020,308	\$3,795,799
61	\$706,811	\$689,669	\$611,945	\$800,130	\$2,808,555	\$987,723	\$827,309	\$960,458	\$1,013,099	\$3,788,590
62	\$706,811	\$689,669	\$611,945	\$796,710	\$2,805,135	\$987,723	\$827,309	\$960,458	\$1,005,345	\$3,780,836
63	\$706,811	\$689,669	\$611,945	\$792,976	\$2,801,401	\$987,723	\$827,309	\$960,458	\$996,988	\$3,772,478
64	\$706,811	\$689,669	\$611,945	\$788,911	\$2,797,336	\$987,723	\$827,309	\$960,458	\$987,994	\$3,763,485
65	\$1,473,181	\$1,437,452	\$1,275,455	\$784,473	\$4,970,561	\$1,992,507	\$1,668,908	\$1,937,506	\$978,295	\$6,577,216
66	\$1,473,181	\$1,437,452	\$1,275,455	\$779,628	\$4,965,715	\$1,992,507	\$1,668,908	\$1,937,506	\$967,834	\$6,566,756
67	\$1,473,181	\$1,437,452	\$1,275,455	\$774,324	\$4,960,412	\$1,992,507	\$1,668,908	\$1,937,506	\$956,566	\$6,555,488
68	\$1,473,181	\$1,437,452	\$1,275,455	\$768,520	\$4,954,607	\$1,992,507	\$1,668,908	\$1,937,506	\$944,400	\$6,543,322
69	\$1,473,181	\$1,437,452	\$1,275,455	\$762,164	\$4,948,251	\$1,992,507	\$1,668,908	\$1,937,506	\$931,268	\$6,530,189
70	\$1,473,181	\$1,437,452	\$1,275,455	\$755,197	\$4,941,284	\$1,992,507	\$1,668,908	\$1,937,506	\$917,100	\$6,516,022
71	\$1,473,181	\$1,437,452	\$1,275,455	\$747,551	\$4,933,639	\$1,992,507	\$1,668,908	\$1,937,506	\$901,819	\$6,500,740
72	\$1,473,181	\$1,437,452	\$1,275,455	\$739,167	\$4,925,254	\$1,992,507	\$1,668,908	\$1,937,506	\$885,332	\$6,484,253
73	\$1,473,181	\$1,437,452	\$1,275,455	\$729,960	\$4,916,047	\$1,992,507	\$1,668,908	\$1,937,506	\$867,549	\$6,466,470
74	\$1,473,181	\$1,437,452	\$1,275,455	\$719,853	\$4,905,941	\$1,992,507	\$1,668,908	\$1,937,506	\$848,390	\$6,447,311
75	\$2,845,722	\$2,776,705	\$2,463,777	\$708,762	\$8,794,966	\$3,286,923	\$2,753,100	\$3,196,190	\$827,764	\$10,063,978
76	\$2,845,722	\$2,776,705	\$2,463,777	\$696,576	\$8,782,780	\$3,286,923	\$2,753,100	\$3,196,190	\$805,581	\$10,041,795
77	\$2,845,722	\$2,776,705	\$2,463,777	\$683,211	\$8,769,415	\$3,286,923	\$2,753,100	\$3,196,190	\$781,749	\$10,017,963
78	\$2,845,722	\$2,776,705	\$2,463,777	\$668,547	\$8,754,751	\$3,286,923	\$2,753,100	\$3,196,190	\$756,189	\$9,992,402
79	\$2,845,722	\$2,776,705		\$652,475	\$6,274,901	\$3,286,923	\$2,753,100	\$3,196,190	\$728,832	\$9,965,046
80	\$2,845,722	\$2,776,705		\$634,883	\$6,257,310	\$3,286,923	\$2,753,100	\$3,196,190	\$699,622	\$9,935,836
81	\$2,845,722	\$2,776,705		\$615,663	\$6,238,089	\$3,286,923	\$2,753,100	\$3,196,190	\$668,524	\$9,904,738
82	\$2,845,722	\$2,776,705		\$594,694	\$6,217,121	\$3,286,923	\$2,753,100	\$3,196,190	\$635,528	\$9,871,742
83	\$2,845,722	\$2,776,705		\$571,875	\$6,194,302	\$3,286,923	\$2,753,100		\$600,644	\$6,640,667
84	\$2,845,722	\$2,776,705		\$547,122	\$6,169,549	\$3,286,923	\$2,753,100		\$563,929	\$6,603,953
Total	\$55,215,577	\$53,876,444	\$33,022,041	\$58,085,571	\$200,199,632	\$68,511,783	\$57,384,920	\$60,228,193	\$71,460,638	\$257,585,534

Summary of CE – Males and Females

- Other costs and assumptions used in assessing cost-effectiveness are detailed in the Reference Document.
- Discount rate of 1.5%, varied from 0% to 3% in the sensitivity analysis.

Based on these assumptions, the CE associated with interventions to prevent and/or treat tobacco use among children and youth is -\$4,221 per QALY (Table 23, row *al*).

Table 23: CE of Interventions for Tobacco Use Prevention and Cessation in Childrenand Youth in a B.C. Birth Cohort of 40,000

	and Youth in a B.C. Birth Conort of 40,000						
Row Label	Variable	Base case	Data Source				
	Cost of Screening / Brief Intervention						
	Reduce Initiation of Tobacco Smoking / E-cigarette Use						
а	Primary care provider costs (in millions) - Females	\$3.66	Table 19				
b	Patient time costs (in millions) - Females	\$7.56	Table 19				
с	Primary care provider costs (in millions) - Males	\$3.32	Table 19				
d	Patient time costs (in millions) - Males	\$6.85	Table 19				
	Increase Cessation of Tobacco Smoking / E-cigarette Use						
е	Primary care provider costs (in millions) - Females	\$1.17	Table 20				
f	Patient time costs (in millions) - Females	\$1.77	Table 20				
g	Primary care provider costs (in millions) - Males	\$0.99	Table 20				
h	Patient time costs (in millions) - Males	\$1.50	Table 20				
	Total Cost of Screening / Brief Intervention						
i	Females	\$14.16	= a + b + e + f				
j	Males	\$12.66	= c + d + g + h				
k	Total Cost of Screening / Brief Intervention	\$26.82	= i + j				
	Treatment Costs Avoided with a Screening / Brief Intervention Program						
	Excess Medical Care Costs Attributable to Tobacco Use Without a Child / Youth						
	Screening Program / Brief Intervention						
-	Females (in millions)	\$258.19	Table 21				
m	Males (in millions)	\$318.21	Table 21				
n	Total (in millions)	\$576.40	Table 21				
	Excess Medical Care Costs Attributable to Tobacco Use With a Child / Youth Screening						
	Program / Brief Intervention						
0	Females (in millions)	\$200.20	Table 22				
p	Males (in millions)	\$257.59	Table 22				
q	Total (in millions)	\$457.79	Table 22				
	Excess Medical Care Costs Attributable to Tobacco Use Avoided	•					
r	Females (in millions)	\$57.99	= I - o				
s	Males (in millions)	\$60.62	= m - p				
t	Total (in millions)	\$118.61	= r + s				
	CE per QALY Gained	•					
u	Net cost of screening and brief intervention (in millions) - Females	-\$43.83	= i - r				
v	Total QALYs gained - Females	9,740	Table 18				
w	CE (\$/QALY gained) - Females	-\$4,501	(u / v) * 1,000,000				
х	Net cost of screening and brief intervention (in millions) - Males	-\$47.96	= j - s				
y	Total QALYs gained - Males	13,195	Table 18				
z	CE (\$/QALY gained) - Males	-\$3,635	(x / y) * 1,000,000				
аа	Net cost of screening and brief intervention (in millions) - Total	-\$91.80	= k - t				
ab	Total QALYs gained - Total	22,935	Table 18				
ас	CE (\$/QALY gained) - Total	-\$4,002	(aa / ab) * 1,000,000				
ad	Net cost of screening and brief intervention (in millions, 1.5% discount) - Females	-\$19.80	Calculated				
ae	Total QALYs gained, 1.5% Discount - Females	4,223	Calculated				
af	CE (\$/QALY gained), 1.5% Discount - Females	-\$4.688	Calculated				
ag	Net cost of screening and brief intervention (in millions, 1.5% discount) - Males	-\$22.76	Calculated				
ah	Total QALYs gained, 1.5% Discount - Males	5,859	Calculated				
ai	CE (\$/QALY gained), 1.5% Discount - Males	-\$3,885	Calculated				
ai	Net cost of screening and brief intervention (in millions, 1.5% discount) - Total	-\$42.56	Calculated				
ak	Total QALYs gained, 1.5% Discount - Total	10,082	Calculated				
al	CE (\$/OALY gained). 1.5% Discount - Total	-\$4.221	Calculated				
		· ·/					

∨ = Estimates from the literature

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CE** = **\$2,835**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CE** = -\$5,445
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CE = -\$3,636
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CE = -\$4,595
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CE = -\$1,206
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CE = -\$5,285
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CE = -\$4,585
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CE = -\$3,899
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CE = -\$5,752
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CE = -\$3,542

Summary of CE – Females Only

Based on these assumptions, the CE associated with interventions to prevent and/or treat tobacco smoking among female children and youth is -\$4,688 per QALY (Table 23, row *af*).

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CE** = **\$4,290**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: CE = -\$6,036
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CE = -\$3,982
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CE = -\$5,124
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CE = -\$922

- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CE = -\$5,877
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CE = -\$5,095
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CE = -\$4,328
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CE = -\$5,703
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CE = -\$4,132

Summary of CE – Males Only

Based on these assumptions, the CE associated with interventions to prevent and/or treat tobacco smoking among male children and youth is -\$3,885 per QALY (Table 23, row *ai*).

We also modified several major assumptions and recalculated the cost per QALY as follows:

- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8% and the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: **CE** = **\$1,833**
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27% and the effectiveness of interventions aimed at smoking cessation are increased from 34% to 69%: **CE** = -\$4,997
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is reduced from 18% to 8%: CE = -\$3,390
- Assume the effectiveness of interventions aimed at smoking initiation among children and youth is increased from 18% to 27%: CE = -\$4,209
- Assume the effectiveness of interventions aimed at smoking cessation are reduced from 34% to 5%: CE = -\$1,404
- Assume the effectiveness of interventions aimed smoking cessation are increased from 34% to 69%: CE = -\$4,840
- Assume the QoL reduction associated with light/moderate/heavy smoking is reduced from 0.031 / 0.033 / 0.062 to 0.018 / 0.019 / 0.042: CE = -\$4,218
- Assume the QoL reduction associated with light/moderate/heavy smoking is increased from 0.031 / 0.033 / 0.062 to 0.045 / 0.047 / 0.082: CE = -\$3,590
- Assume the harms attributable to e-cigarette use are reduced from being 37% as harmful as smoking conventional cigarettes to being 10% as harmful: CE = -\$5,796
- Assume the harms attributable to e-cigarette use are increased from being 37% as harmful as smoking conventional cigarettes to being 60% as harmful: CE = -\$3,151

Summary

Males and Females

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with interventions to prevent and/or treat tobacco smoking among children and youth ages 5 to 17 in a British Columbia birth cohort of 40,000 is estimated to be 10,082 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be -\$4,221 per QALY (see Table 24).

Table 24: Interventions for Tobacco Use Prevention and						
Cessation in Children and Youth						
In a B.C. Birth Cohort of 40,000						
	Summary					
Base						
Case Range			nge			
CPB (Potential QALYs Gained	d)					
1.5% Discount Rate	10,082	2,590	18,112			
3% Discount Rate	4,419	1,131	7,970			
0% Discount Rate	22,935	5,910	41,077			
CE (\$/QALY) including patient time costs						
1.5% Discount Rate	-\$4,221	-\$5,445	\$2,835			
3% Discount Rate	-\$3,858	-\$6,222	\$10,538			
0% Discount Rate	-\$4,002	-\$4,666	-\$493			
CE (\$/QALY) excluding patient time costs						
1.5% Discount Rate	-\$5,794	-\$6,321	-\$3,288			
3% Discount Rate	-\$7,087	-\$8,012	-\$2,080			
0% Discount Rate	\$4,773	-\$5,096	-\$3,484			

Females Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with interventions to prevent and/or treat tobacco smoking among female children and youth ages 5 to 17 in a British Columbia birth cohort of 40,000 is estimated to be 4,223 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be -\$4,688 per QALY (see Table 25).

Table 25: Interventions for Tobacco Use Prevention and						
Cessation in Children and Youth						
In a B.C. Birth Cohort of 40,000						
Sumn	hary - Female	es Only				
Base						
Case Range			nge			
CPB (Potential QALYs Gained	(k					
1.5% Discount Rate	4,223	1,056	7,812			
3% Discount Rate	1,820	455	3,374			
0% Discount Rate	9,740	3,473	17,995			
CE (\$/QALY) including patient time costs						
1.5% Discount Rate	-\$4,688	-\$6,036	\$4,290			
3% Discount Rate	-\$4,093	-\$6,906	\$14,625			
0% Discount Rate	-\$4,501	-\$4,666	-\$152			
CE (\$/QALY) excluding patient time costs						
1.5% Discount Rate	-\$6,665	-\$7,105	-\$3,617			
3% Discount Rate	-\$8,212	-\$9,128	-\$1,872			
0% Discount Rate	-\$5,458	-\$5,670	-\$3,979			

Males Only

Applying a 1.5% discount rate, the clinically preventable burden (CPB) associated with interventions to prevent and/or treat tobacco smoking among male children and youth ages 5 to 17 in a British Columbia birth cohort of 40,000 is estimated to be 5,859 quality-adjusted life years (QALYs) while the cost-effectiveness (CE) is estimated to be -\$3,885 per QALY (see Table 26).

Table 26: Interventions for Tobacco Use Prevention and						
Cessation	Cessation in Children and Youth					
In a B.C.	Birth Cohort	of 40,000				
Sum	mary - Males	Only				
	Base					
Case Range			ıge			
CPB (Potential QALYs Gained	d)					
1.5% Discount Rate	5,859	1,534	10,300			
3% Discount Rate	2,598	676	4,596			
0% Discount Rate	13,195	3,473	23,083			
CE (\$/QALY) including patient time costs						
1.5% Discount Rate	-\$3,885	-\$4,997	\$1,833			
3% Discount Rate	-\$3,693	-\$5,720	\$7,791			
0% Discount Rate	-\$3,635	-\$4,287	-\$732			
CE (\$/QALY) excluding patient time costs						
1.5% Discount Rate	-\$5,166	-\$5,726	-\$3,061			
3% Discount Rate	-\$5,298	-\$7,193	-\$2,220			
0% Discount Rate	-\$4,268	-\$4,649	-\$3,137			
CE (\$/QALY) excluding patie 1.5% Discount Rate 3% Discount Rate 0% Discount Rate	nt time costs - \$5,166 -\$5,298 -\$4,268	-\$5,726 -\$7,193 -\$4,649	- \$3,061 -\$2,220 -\$3,137			

Preventive Medication / Devices

Fluoride Varnish for Dental Health in Children - Evidence Update

Background

The economic modelling of the '*Fluoride Varnish for Dental Health in Children*' maneuver was initially conducted by the LPS in 2014. The evidence at that time supported fluoride varnish application as a clinically effective routine intervention for the prevention of dental caries in the general population of children between the ages of 1 and 5.

As per direction from the LPSEC, in 2022/23 the LPS conducted a thorough review of new evidence that has emerged in recent years, which uncovered several substantial findings calling into question the clinical effectiveness of fluoride varnish application in the general population of children ages 1 to 5. These findings and evidence are described in detail below.

United States Preventive Service Task Force Recommendations (2021)

The most recent USPSTF recommendation is as follows:

The USPSTF recommends that primary care clinicians prescribe oral fluoride supplementation starting at age 6 months for children whose water supply is deficient in fluoride. (B recommendation)

The USPSTF recommends that primary care clinicians apply fluoride varnish to the primary teeth of all infants and children starting at the age of primary tooth eruption. (B recommendation)⁹³

These 2021 USPSTF recommendations are identical to the previous (2014) USPSTF recommendations.⁹⁴

The Cochrane Oral Health Group (2013)

The review suggests a substantial caries-inhibiting effect of fluoride varnish in both permanent and primary teeth, however the quality of the evidence was assessed as moderate, as it included mainly high risk of bias studies, with considerable heterogeneity.⁹⁵

Application of Fluoride Varnish in Children

In British Columbia

• We were unable to find any information on the proportion of children in BC who have had one or more fluoride varnish (FV) applications.

Best in the World

• Since July 2004, the government of Taiwan has provided free fluoride varnish services in dental clinic settings for all pre-school children. The application of fluoride varnish is recommended every 6 months in urban areas and every 3 months

⁹³ USPSTF Task Force. Screening and interventions to prevent dental caries in children younger than 5 years: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(21): 2172-8.

⁹⁴ Moyer VA. Prevention of dental caries in children from birth through age 5 years: US Preventive Services Task Force recommendation statement. *Pediatrics*. 2014; 133(5): 1-10.

⁹⁵ Marinho V, Worthington H, Walsh T, et al. *Fluoride varnishes for preventing dental caries in children and adolescents and fissure sealants for preventing dental decay in permanent teeth*. Cochrane Oral Health Group. The Cochrane Library. July 11, 2013. Available online at https://www.cochrane.org/CD002279/ORAL_fluoride-varnishes-for-preventing-dental-caries-in-children-and-adolescents. Accessed December 2022.

in rural areas or for high risk groups (indigenous people, disabled children, or children from low-income households). Of 1,246 eight- and nine-year old children included in a follow-up assessment, 23% had received no fluoride varnish applications, 23% received one application, 24% received two applications and 29% received three or more applications. The rate for three or more applications was significantly higher in children whose mothers had a college or higher (vs high school or lower) education (32.9% vs. 22.7%).⁹⁶

- In a school-based program of 589 children ages 3 to 7 from deprived neighbourhoods in the UK, 82.7% (487) consented to three fluoride applications over the period of a year while 61.6% (363) received all three applications.⁹⁷
- A school-based oral health program targeting 3 to 6-year-old children in East London, UK, (in "two of the most deprived boroughs in England") found that 21% of eligible children received two fluoride applications in year 1 of the program. This increased to 29% in year 2 and 53% in year 3.98
- Fluoride varnish application rates of between 53%⁹⁹ and 62%¹⁰⁰ have been achieved in programs focussing on children from low socio-economic status (SES) neighbourhoods.
- In the general population of pre-school children, a rate of 29% (for 3 or more applications of fluoride varnish during the pre-school years) was achieved in Taiwan.¹⁰¹

Definitions / Background

- Early childhood caries (ECC) is defined as "the presence of one or more decayed (noncavitated or cavitated lesions), missing (due to caries) or filled tooth surfaces in any primary tooth in a preschool-age child, i.e., between birth and 71 months of age."¹⁰²
- The American Academy of Pediatric Dentistry defines severe-ECC (S-ECC) as any sign of smooth-surface caries in children younger than 3 years. From ages 3 through 5, 1 or more cavitated, missing (due to caries), or filled smooth surfaces in primary maxillary anterior teeth or a decayed, missing, or filled score of ≥4 (age 3), ≥5 (age 4), or ≥6 (age 5).¹⁰³

⁹⁶ Lin P, Wang J, Chuag T et al. Association between population-based fluoride varnish application services and dental caries experience among schoolchildren in Taiwan. *Journal of the Formosan Medical Association*. 2022; 121 (5): 986-94.

⁹⁷ Buckingham S and John J. Recruitment and participation in preschool and school-based fluoride varnish pilots– the South Central experience. *British Dental Journal*. 2013; 215(E8): 1-4.

⁹⁸ Evans P, Pearson N and Simons D. A school-based oral health intervention in East London: the Happy Teeth fluoride varnish programme. *British Dental Journal*. 2013; 215(E14): 1-5.

⁹⁹ Evans P, Pearson N and Simons D. A school-based oral health intervention in East London: the Happy Teeth fluoride varnish programme. *British Dental Journal*. 2013; 215(E14): 1-5.

¹⁰⁰ Buckingham S and John J. Recruitment and participation in preschool and school-based fluoride varnish pilots–the South Central experience. *British Dental Journal*. 2013; 215(E8): 1-4.

¹⁰¹ Lin P, Wang J, Chuag T et al. Association between population-based fluoride varnish application services and dental caries experience among schoolchildren in Taiwan. *Journal of the Formosan Medical Association*. 2022; 121 (5): 986-94.

¹⁰² Canadian Dental Association. *Early Childhood Caries*. Available online at https://www.cda-adc.ca/en/about/position_statements/ecc/. Accessed December 2022.

¹⁰³ American Academy of Pediatric Dentistry. *Definition of Early Childhood Caries (ECC)*. Available online at https://www.aapd.org/assets/1/7/d_ecc.pdf. Accessed December 2022.

• "Dental caries results from the metabolism of sugars by bacteria that are normally resident in the oral cavity. The acids produced cause the demineralisation (breakdown) of the tooth surface. Initially, the caries lesion is confined to the dental enamel. In its early stages, the disease process can be halted or even reversed by a process known as remineralisation. This is facilitated by the presence of fluoride at the interface between the tooth surface and the overlying biofilm of the dental plaque.

Untreated, the disease process continues to involve the underlying dentine and eventually the dental pulp becomes inflamed, resulting in pain: toothache. Once the dentine is involved, the tooth requires a restoration to halt caries progression. Ultimately, an inflamed pulp will die and a dental abscess may result. Resolution will require either root-filling or the extraction of the tooth."¹⁰⁴

- "Topical fluoride is applied as a varnish with a small brush in young children....No studies directly assessed the appropriate ages at which to start and stop the application of fluoride varnish. However, given the mechanism of action of this intervention, benefits are likely to accrue starting at the time of primary tooth eruption. In studies, fluoride varnish was most commonly administered as 5% sodium fluoride, every 6 months."¹⁰⁵
- In contrast to the application of fluoride sealants, "the application of FV is much less technique sensitive and does not require the degree of specialist equipment needed for sealant placement. FV can simply be painted onto teeth using a small brush. Moisture control using cotton wool rolls or pads is sufficient. As a result, FV can be applied in a school medical room or other private location and does not necessarily need to be done within a clinic or traditional health-care setting."¹⁰⁶

Estimating the Prevalence of Dental Caries in Young Children

- All children are at potential risk for dental caries.
- Biological risk factors include cariogenic bacteria, developmental defects of tooth enamel, and low saliva flow rates.¹⁰⁷

Prevalence is Significantly Influenced by Social Determinants

- Social determinants of health (nonbiological factors) that are associated with increased caries risk include access to dental care, low socioeconomic status, personal and family oral health history, dietary habits (especially frequent intake of dietary sugars in foods and beverages), fluoride exposure, and oral hygiene practices.¹⁰⁸
- Similar to many chronic, lifestyle-associated diseases, caries prevalence is markedly linked to social and economic deprivation. At the age of 5 years, the prevalence of

¹⁰⁴ Chestnutt I, Hutchings S, Playle R et al. Seal or varnish? A randomised controlled trial to determine the relative cost and effectiveness of pit and fissure sealant and fluoride varnish in preventing dental decay. *Health Technology Assessment*. 2017; 21(21).

¹⁰⁵ USPSTF Task Force. Screening and interventions to prevent dental caries in children younger than 5 years: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(21): 2172-8.

¹⁰⁶ Chestnutt I, Hutchings S, Playle R et al. Seal or varnish? A randomised controlled trial to determine the relative cost and effectiveness of pit and fissure sealant and fluoride varnish in preventing dental decay. *Health Technology Assessment*. 2017; 21(21).

¹⁰⁷ USPSTF Task Force. Screening and interventions to prevent dental caries in children younger than 5 years: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(21): 2172-8.

¹⁰⁸ USPSTF Task Force. Screening and interventions to prevent dental caries in children younger than 5 years: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(21): 2172-8.

dental decay in children resident in the most deprived localities is more than twice that of children living in the least deprived communities.^{109,110}

• In BC, the rate of visible dental decay in children in kindergarten was 39.0% in 2006/07 and 37.1% in 2009/10. This rate, however, varied substantially by SES, from a low of 28.9% in the highest SES to 47.1% in the lowest SES (see Table 1).¹¹¹

Table 1: Dental Decay Rates by NeighbourhoodSocio-Economic Status (SES)British Columbia, 2006/07 and 2009/10						
SES Index	2006/07	2009/10				
Low SES	49.2%	47.1%				
Moderate-low SES	42.1%	41.1%				
Moderate SES	37.3%	34.9%				
Moderate-high SES	34.7%	32.9%				
High SES	30.5%	28.9%				
Total	39.0%	37.1%				

• In their review of the Canadian literature, Peirce et al found 27 studies that reported on the prevalence of ECC in Canada. The vast majority of studies focussed on the prevalence of ECC in Indigenous children (i.e., First Nations, Inuit, or Metis), children of newcomers (immigrants and refugees) or children with S-ECC.¹¹²

¹⁰⁹ Chestnutt I, Hutchings S, Playle R et al. Seal or varnish? A randomised controlled trial to determine the relative cost and effectiveness of pit and fissure sealant and fluoride varnish in preventing dental decay. *Health Technology Assessment*. 2017; 21(21).

¹¹⁰ International Centre for Oral Health Inequalities Research and Policy. *Social Inequalities in Oral Health: From Evidence to Action*. Edited by Watt R, Listl S, Peres M and Heilmann A. Available online at

https://media.news.health.ufl.edu/misc/cod-oralhealth/docs/posts_frontpage/SocialInequalities.pdf. Accessed December 2022.

¹¹¹ Poon B, Holley P, Louie A et al. Dental caries disparities in early childhood: A survey of kindergarten children in British Columbia. *Canadian Journal of Public Health*. 2015; 106(5): e308 – e314.

¹¹² Pierce A, Singh S, Lee J et al. The burden of early childhood caries in Canadian children and associated risk factors. *Frontiers in Public Health*. 2019; 7: 328.

• Based on the findings of the BC Dental Health Survey, the proportion of kindergarten children who were carries free was 50.0% for the indigenous population and 71.0% for the non-indigenous population in 2018/19 (see Figure 1).^{113,114,115}

• The overall rate of dental surgery to treat ECC in Canada between 2010/11 and 2013/14 was 12.1 per 1,000 children 12 - 59 months of age, accounting for 31.0% of all day surgeries performed on this age group in Canada. Rates of dental surgery for children from neighbourhoods with a high proportion of Aboriginal people were 7.8 times those for children living in areas with a low proportion (84.5 vs. 10.9 per

¹¹³ BC Ministry of Health Services, Population and Public Health. *British Columbia Dental Survey of Kindergarten-Aged Children 2009-2010: A Regional and Provincial Analysis*. 2011. Available online at https://www.health.gov.bc.ca/library/publications/year/2011/provincial-kindergarten-dental-survey-report-2009-2010.pdf. Accessed December 2022.

¹¹⁴ BC Ministry of Health, First Nations Health Authority. *B.C. Dental Survey of Aboriginal Kindergarten Children 2015/2016: A Provincial and First Nations School Analysis.* 2019. Available online at

https://www.health.gov.bc.ca/library/publications/year/2019/BC_dental_survey_of_aboriginal_kindergarten_child ren_2015_2016_final.pdf. Accessed December 2022.

¹¹⁵ BC Ministry of Health, Population Public Health Division. 2018-19 Provincial Dental Health Survey Report: A Provincial and Regional Analysis. 2021. Available online at

https://www.health.gov.bc.ca/library/publications/year/2021/provincial-kindergarten-dental-health-survey-report-2018-19.pdf. Accessed December 2022.

1,000). Children from the least-affluent regions had dental surgery rates 3.7 times higher than those from the most-affluent communities (25.7 vs. 6.9 per 1,000).¹¹⁶

Prevalence in British Columbia

- In BC, the rate of visible dental decay in children in kindergarten was 39.0% in 2006/07 and 37.1% in 2009/10 (see Table 1).¹¹⁷
- Based on the findings of the BC Dental Health Survey, the proportion of kindergarten children who were carries free increased from 63.3% in 2009/10 to 69.2% in 2018/19 (see Figure 1).

Prevalence in Other Jurisdictions

- In England and Wales, the mean number of decayed, missing and filled teeth (DMFT) in 5-year olds decreased from 4.0 in 1973 to 1.8 in 1983, largely due to the widespread use of fluoride-containing toothpaste.¹¹⁸
- In Australia in 2007, 35.8% of 5-year old children had ECC.¹¹⁹
- The mean number of DMFT in 6-year old Australian children has declined from over 3 in the late 1970s to approximately 1.5 during the late 1990s before settling in at approximately 2 in the 2000s (see Figure 2).¹²⁰

¹¹⁶ Schroth R, Quiñonez C, Shwart L et al. Treating early childhood caries under general anesthesia: A national review of Canadian data. *Journal of the Canadian Dental Association*. 2016; 82: g20.

¹¹⁷ Poon B, Holley P, Louie A et al. Dental caries disparities in early childhood: A survey of kindergarten children in British Columbia. *Canadian Journal of Public Health*. 2015; 106(5): e308 – e314.

¹¹⁸ Downer M. Changing trends in dental caries experience in Great Britain. *Advances in Dental Research*. 1993; 7(1): 19-24.

¹¹⁹ Mejia G, Amarasena N, Ha D et al. *Child Dental Health Survey Australia 2007: 30-Year Trends in Child Oral Health.* 2012. Available online at https://www.aihw.gov.au/getmedia/3e418a11-1d30-4cb8-a393-e1f0532cd996/13854.pdf.aspx?inline=true. Accessed December 2022.

¹²⁰ Mejia G, Amarasena N, Ha D et al. *Child Dental Health Survey Australia 2007: 30-Year Trends in Child Oral Health.* 2012. Available online at https://www.aihw.gov.au/getmedia/3e418a11-1d30-4cb8-a393-e1f0532cd996/13854.pdf.aspx?inline=true. Accessed December 2022.

Prevalence by Risk Status

- In the US, an estimated 23% to 28% of children ages 2 to 5 have ECC, and approximately 4.6% have S-ECC.¹²¹
- Ugolini and colleagues found a prevalence of S-ECC of 5.9% in a study of 563 children ages 3 to 5 in Italy.¹²²
- Bissar et al found a prevalence of S-ECC of 9.5% in a study of 1,007 children ages 3 to 5 in Germany.¹²³

Impact of Dental Caries on Quality of Life

- Dental caries in early childhood is associated with pain, loss of teeth, impaired growth, decreased weight gain, negative effects on quality of life, poor school performance, and future dental caries.^{124,125}
- A systematic review by Jackson et al found poor oral health associated with significantly increased risk of poor academic performance (OR of 1.5, 95% CI, 1.20 to 1.83) and school absenteeism (OR of 1.43, 95% CI, 1.24 to 1.63).¹²⁶
- A meta-analysis of 10 cohort studies suggested that children with early childhood caries are three times more likely to develop caries in their permanent teeth (OR, 3.22; 95% CI 2.80 to 3.71).¹²⁷

Effectiveness of Fluoride Varnish Application in Children

- Based on a meta-analysis of 10 randomized controlled trials, the 2013 Cochrane review found a 37% (95% CI of 24% to 51%) reduction in decayed, missing and filled tooth surfaces with the consistent application of fluoride varnish on first or baby teeth. Seven of the 10 studies (70%) were based on applying fluoride varnish every 6 months. While the majority of subjects in the 10 studies were between the ages of 1 and 5, 37% were between the ages of 6 and 8.¹²⁸
- Based on a meta-analysis of 13 RCTs and controlled observational studies, the 2021 USPSTF review found a decreased caries increment (mean difference -0.94, 95% CI, -1.74 to -0.34, or just under one tooth surface per child) and decreased likelihood of experiencing incident caries (RR 0.80, 95% CI, 0.66 to 0.95) with the application of

¹²¹ Chou R, Pappas M, Dana T et al. *Screening and Prevention of Dental Caries in Children Younger Than Age Five Years: A Systematic Review for the U.S. Preventive Services Task Force.* Evidence Synthesis No. 210. AHRQ Publication No. 21-05279-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

¹²² Ugolini A, Salamone S, Agostino P et al. Trends in early childhood caries: An Italian perspective. *Oral Health* & *Preventive Dentistry*. 2018; 16: 87-92.

¹²³ Bissar A, Schiller P, Wolff A et al. Factors contributing to severe early childhood caries in south-west Germany. *Clinical Oral Investigations*. 2014; 18: 1411–18.

¹²⁴ Chou R, Pappas M, Dana T et al. Screening and interventions to prevent dental caries in children younger than 5 years: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2021; 326(21): 2179-92.

¹²⁵ Zaror C, Matamala-Santander A, Ferrer, M et al. Impact of early childhood caries on oral health-related quality of life: A systematic review and meta-analysis. *International Journal of Dental Hygiene*. 2022; 20: 120-35.

¹²⁶ Jackson S, Vann W, Kotch J et al. Impact of poor oral health on children's school attendance and performance. *American Journal of Public Health*. 2011; 101(10): 1900-6.

¹²⁷ Lam P, Chua H, Ekambaram M et al. Does early childhood caries increase caries development among school children and adolescents? A systematic review and meta-analysis. *International Journal of Environmental Research and Public Health*. 2022; 19: 13459.

¹²⁸ Marinho V, Worthington H, Walsh T, et al. *Fluoride varnishes for preventing dental caries in children and adolescents and fissure sealants for preventing dental decay in permanent teeth*. Cochrane Oral Health Group. The Cochrane Library. July 11, 2013. Available online at https://www.cochrane.org/CD002279/ORAL_fluoride-varnishes-for-preventing-dental-caries-in-children-and-adolescents. Accessed December 2022.

fluoride varnish in children aged 0-5 years.¹²⁹ The majority of studies (79%) were based on applying fluoride varnish every 6 months.

In a sub-analysis based on trials deemed to be of good (N=3) vs. fair quality (N=10), the reviewers for the 2021 USPSTF recommendation found the following results:¹³⁰

Good trials – no change in caries increment (mean difference 0.08, 95% CI, -0.28 to 0.27) and no change in the likelihood of experiencing incident caries (RR 0.85, 95% CI, 0.71 to 1.08).

Fair trials – a significant reduction in caries increment (mean difference -1.33, 95% CI, -2.36 to -0.54) and a significant reduction in the likelihood of experiencing incident caries (RR 0.77, 95% CI, 0.60 to 0.96).

The 2021 review updated the 2014 USPSTF review. In the current review, 8 trials included in the 2014 review were excluded due to poor-quality and 10 additional newer trials added.¹³¹

• The 2019 systematic review and meta-analysis by de Sousa and colleagues included 20 trials (with 10 published since the 2013 Cochrane review) assessing the effectiveness of fluoride varnish specifically in pre-schoolers. They found a 12% (95% CI of 5% to 19%) reduction in decayed, missing and filled tooth surfaces, but the magnitude of the reduction was only one surface per child or less (similar to the 2021 USPSTF review). They comment that "this difference is possibly clinically irrelevant."¹³²

Commenting on the difference between their findings and that of other reviews, they note that "our results showed that FV effectiveness is lower in more recent trials than in older trials. Maybe this is due to the higher risk of bias in the older studies, especially selection bias, which can overestimate the effect of the treatments."¹³³

"In the present review, a large number of the children developed new dentine caries lesions, regardless of FV use. The cause of dental caries, and of the increase in caries with age, is the excessive exposure to sugar, not the lack of fluoride exposure. Sugar reduction is urgently needed as fluoride does not halt caries when sugar intake is high ($\geq 10\%$).^{134,135,136}

• "The importance of sugars as a cause of caries is underemphasized and not prominent in preventive strategies. This is despite overwhelming evidence of its unique role in

¹²⁹ Chou R, Pappas M, Dana T et al. Screening and interventions to prevent dental caries in children younger than 5 years: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2021; 326(21): 2179-92.

¹³⁰ Chou R, Pappas M, Dana T et al. *Screening and Prevention of Dental Caries in Children Younger Than Age Five Years: A Systematic Review for the U.S. Preventive Services Task Force.* Evidence Synthesis No. 210. AHRQ Publication No. 21-05279-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021

¹³¹ Chou R, Pappas M, Dana T et al. *Screening and Prevention of Dental Caries in Children Younger Than Age Five Years: A Systematic Review for the U.S. Preventive Services Task Force.* Evidence Synthesis No. 210. AHRQ Publication No. 21-05279-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021.

¹³² de Sousa F, dos Santos A, Nadanovsky P et al. Fluoride varnish and dental caries in preschoolers: A systematic review and meta-analysis. *Caries Research*. 2019; 53: 502-13.

¹³³ de Sousa F, dos Santos A, Nadanovsky P et al. Fluoride varnish and dental caries in preschoolers: A systematic review and meta-analysis. *Caries Research*. 2019; 53: 502-13.

¹³⁴ Sheiham A, James W. A new understanding of the relationship between sugars, dental caries and fluoride use: Implications for limits on sugars consumption. *Public Health Nutrition*. 2014; 17(10): 2176-84.

¹³⁵ Sheiham A, James W. Diet and dental caries: The pivotal role of free sugars reemphasized. *Journal of Dental Research*. 2015; 94(10):1341-7.

¹³⁶ de Sousa F, dos Santos A, Nadanovsky P et al. Fluoride varnish and dental caries in preschoolers: A systematic review and meta-analysis. *Caries Research*. 2019; 53: 502-13.

causing a worldwide caries epidemic. Why this neglect? One reason is that researchers mistakenly consider caries to be a multifactorial disease; they also concentrate mainly on mitigating factors, particularly fluoride. However, this is to misunderstand that the only cause of caries is dietary sugars. These provide a substrate for cariogenic oral bacteria to flourish and to generate enamel-demineralizing acids. Modifying factors such as fluoride and dental hygiene would not be needed if we tackled the single cause - sugars."¹³⁷

Does the Baseline Risk of Caries Change the Effectiveness of the Intervention?

- In the 2021 USPSTF evidence review, 12 of the 13 included studies were conducted in children at higher risk of caries.¹³⁸ For the intervention to be effective in high risk children outside of a clinical trial, they would have to adhere to preventive visiting schedules which may be challenging given the risk of loss to follow-up in programs with this type of risk-based protocol.
- The authors of the **evidence review** for the 2021 USPSTF stated that "because almost all trials were conducted in higher-risk children, the applicability of findings to children not at increased risk is uncertain." (p. 2190)¹³⁹
- The authors of the 2021 USPSTF **recommendation statement**, on the other hand, argue that "although the evidence to support fluoride varnish is drawn from higherrisk populations, the provision of fluoride varnish to all children is reasonable because the prevalence of risk factors is high in the US population." (p. 2176)¹⁴⁰
- Schwendicke et al set out to assess the cost-effectiveness of FV in Germany based on the caries risk status of the child.¹⁴¹ Risk status was determined by the risk of developing new caries lesions each year. Low risk was defined as <0.50 DMFS/year, medium risk as 0.50 1.29 DMFS/year and high risk as ≥1.3 DMFS/year. Study results within the 2013 Cochrane review¹⁴² were then regrouped by this risk status. While the pooled results indicated a 37% (95% CI of 24% to 51%) reduction in DMFT (this is equivalent to an OR of 0.63 with a 95% CI of 0.49 0.76), the results by risk status were as follows:
 - \circ Low Risk OR of 0.919 (95% CI of 0.174 4.861)
 - Medium Risk OR of 0.776 (95% CI of 0.166 3.637)
 - High Risk OR of 0.148 (95% CI of 0.051 0.432)

¹³⁷ Sheiham A, James W. Diet and dental caries: The pivotal role of free sugars reemphasized. *Journal of Dental Research*. 2015; 94(10):1341-7.

¹³⁸ Chou R, Pappas M, Dana T et al. *Screening and Prevention of Dental Caries in Children Younger Than Age Five Years: A Systematic Review for the U.S. Preventive Services Task Force.* Evidence Synthesis No. 210. AHRQ Publication No. 21-05279-EF-1. Rockville, MD: Agency for Healthcare Research and Quality; 2021

 ¹³⁹ Chou R, Pappas M, Dana T et al. Screening and interventions to prevent dental caries in children younger than
5 years: Updated evidence report and systematic review for the US Preventive Services Task Force. *JAMA*. 2021;
326(21): 2179-92.

¹⁴⁰ USPSTF Task Force. Screening and interventions to prevent dental caries in children younger than 5 years: US Preventive Services Task Force recommendation statement. *JAMA*. 2021; 326(21): 2172-8.

¹⁴¹ Schwendicke F, Splieth C, Thomson W et al. Cost-effectiveness of caries-preventive fluoride varnish applications in clinic settings among patients of low, moderate and high risk. *Community Dentistry and Oral Epidemiology*. 2018; 46(1): 8-16.

¹⁴² Marinho V, Worthington H, Walsh T, et al. *Fluoride varnishes for preventing dental caries in children and adolescents and fissure sealants for preventing dental decay in permanent teeth*. Cochrane Oral Health Group. The Cochrane Library. July 11, 2013. Available online at https://www.cochrane.org/CD002279/ORAL_fluoride-varnishes-for-preventing-dental-caries-in-children-and-adolescents. Accessed December 2022.

Note that the results for the low or medium risk populations are *not statistically significant*. The results for the high risk group, on the other hand, indicate a *highly significant* 85.2% (95% CI of 56.8% to 94.9%) reduction in DMFT.

• An analysis in Winnipeg, Manitoba assessed the cost-effectiveness of FV application every 3 months in preschool children in daycare at *high risk of dental caries*. Over a five-year period, 4.4 cavities were avoided when compared with usual dental care. In addition, the need for dental surgery under general anesthetic decreased from 19.1% to 1.6%. Finally, savings of \$823 (in 2018 Can\$) per cavity avoided were observed.¹⁴³

Is the Application of Fluoride Varnish Effective as an Adjunct to Regular Tooth Brushing?

- Regular tooth brushing with fluoride toothpaste (with ≥ 1000 ppm of fluoride) is the principal non-professional intervention to prevent caries.¹⁴⁴
- Agouropoulos et al assessed the effectiveness of FV application as an adjunct to supervised tooth brushing in a double-blind randomized controlled trial of 328 preschool children (ages 2-5). All children received oral health education with hygiene instructions twice yearly and attended supervised tooth brushing once daily. The test group was treated with fluoride varnish biannually while the control group had placebo applications. They concluded that "biannual fluoride varnish applications in preschool children did not show significant caries-preventive benefits when provided as an adjunct to school-based supervised tooth brushing with 1000ppm fluoride toothpaste."¹⁴⁵
- In their systematic review and meta-analysis of six RCTs (with 5,034 participants), Yu and co-authors found no significant difference between children receiving FV in addition to the regular use of fluoride toothpaste when compared with children who only engaged in the regular use of fluoride toothpaste (mean difference in DMFT of -0.17, 95% CI -0.60 to 0.26).¹⁴⁶

Summary

Based on this detailed review, current evidence no longer supports the universal routine application of fluoride varnish on primary teeth in the general population of children. This maneuver will no longer be included on the LPS, as it does not meet the LPS criteria for clinical effectiveness (the first step of the LPS process). The analysis presented in this Addendum may help inform considerations of other targeted approaches, however this work is outside the scope of the LPS.

¹⁴³ Norrie O, Pharand L. Cost effectiveness of a fluoride varnish daycare program versus usual care in central Winnipeg, Manitoba. *Canadian Journal of Dental Hygiene*. 2020; 54(2): 68-74.

¹⁴⁴ Walsh T, Worthington H, Glenny A et al. Fluoride toothpastes of different concentrations for preventing dental caries. *Cochrane Database of Systematic Reviews*. 2019. Available online at

https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD007868.pub3/full. Accessed January 2023.

¹⁴⁵ Agouropoulos A, Twetman S, Pandis N et al. Caries-preventive effectiveness of fluoride varnish as adjunct to oral health promotion and supervised tooth brushing in preschool children: A double-blind randomized controlled trial. *Journal of Dentistry*. 2014; 42(10): 1277-83.

¹⁴⁶ Yu L, Yu X, Li Y et al. The additional benefit of professional fluoride application for children as an adjunct to regular fluoride toothpaste: A systematic review and meta-analysis. *Clinical Oral Investigations*. 2021; 25: 3409 – 19.